
A Review and Taxonomy of Interactive Optimization Methods

in Operations Research

David Meignan, Universität Osnabrück, Osnabrück, Germany
Sigrid Knust, Universität Osnabrück, Osnabrück, Germany
Jean-Marc Frayret, École Polytechnique de Montréal, Montréal, Canada
Gilles Pesant, École Polytechnique de Montréal, Montréal, Canada
Nicolas Gaud, Université de Technologie de Belfort-Montbéliard, Belfort, France

This is a pre-print version (July 2015) of the article published in ACM Transactions
on Interactive Intelligent Systems, Volume 5, Issue 3, 2015. The definitive version
is available from the DOI: http://dx.doi.org/10.1145/2808234

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), under grant
ME 4045/2-1.

http://dx.doi.org/10.1145/2808234


A Review and Taxonomy of Interactive Optimization Methods in
Operations Research

David Meignan, Universität Osnabrück, Osnabrück, Germany
Sigrid Knust, Universität Osnabrück, Osnabrück, Germany
Jean-Marc Frayret, École Polytechnique de Montréal, Montréal, Canada
Gilles Pesant, École Polytechnique de Montréal, Montréal, Canada
Nicolas Gaud, Université de Technologie de Belfort-Montbéliard, Belfort, France

Abstract

This paper presents a review and a classification of interactive optimization meth-
ods. These interactive methods are used for solving optimization problems. The
interaction with an end user or decision maker aims at either improving the efficiency
of the optimization procedure, enriching the optimization model, or informing the user
regarding the solutions proposed by the optimization system. First, we present the
challenges of using optimization methods as a tool for supporting decision making,
and we justify the integration of the user in the optimization process. This integra-
tion is generally achieved via a dynamic interaction between the user and the system.
Next, the different classes of interactive optimization approaches are presented. This
detailed review includes trial and error, interactive reoptimization, interactive multi-
objective optimization, interactive evolutionary algorithms, human-guided search, and
other approaches that are less well covered in the research literature. On the basis
of this review, we propose a classification that aims to better describe and compare
interaction mechanisms. This classification offers two complementary views on inter-
active optimization methods. The first one focuses on the user’s contribution to the
optimization process, and the second perspective concerns the components of inter-
active optimization systems. Finally, on the basis of this review and classification,
we identify some open issues and potential perspectives for interactive optimization
methods.

1 Introduction
Over the years Operations Research has produced a number of successful computa-

tional approaches and software tools for solving complex optimization problems of practical
value. Optimization problems are present at all planning levels; from the strategic level
for determining long-term orientations of an organization or business, to the operational
level to determine the day-to-day operations. If we look at these different levels of de-
cision making, strategic and tactical planning are probably the activities that have most
benefited from recent optimization methods. However, many obstacles remain for the in-
tegration of advanced optimization methods in operational decision support tools (see, for
instance [Maccarthy and Liu, 1993, Kellogg and Walczak, 2007, McCollum, 2006]).

Three major obstacles can be identified for the integration of advanced optimization
methods in decision support tools. First, it is generally difficult to obtain a model of an
optimization problem that reflects all aspects of the real decision makers’ problem. This
is particularly true for operational decision making when multiple heterogeneous criteria
have to be considered in the optimization model. A second obstacle concerns the possible
inadequacy between performances of the optimization method and the real requirements
of the users. Finally, mistrust or misunderstanding of automated optimization systems
by users also constitute major obstacles to the effective use of advanced optimization
methods.

A common research direction to address the first of these three issues is the design of
richer, more realistic optimization models. A wide variety of papers proposes to extend



1. INTRODUCTION

Figure 1: Human-in-the-loop approach for optimization.

general optimization models with additional features that better describe the problem at
hand. To give only one example, in [Burke et al., 2004] a literature review on the nurse
rostering problem is presented. The authors distinguish at least 40 model features (hard
constraints, soft constraints and terms in the objective functions) that contribute to better
fit the case studies. If this kind of model improvement can reduce the gap between the
optimization model and the real problem, it may also reduce the scope of applications,
and could make the implementation of an optimization method more complex.

A second research direction, motivated by the performance issue, consists in designing
more efficient optimization methods. Again, a lot of articles in the research literature
propose and compare optimization methods that are more efficient than previous ones.
An illustration of this race for performance is the vehicle-routing problem for which new
algorithms and improved results are still proposed fifty years after the initial problem’s
formal definition [Laporte, 2009]. However, the gain in performance is often obtained at
the expense of the simplicity and flexibility of the methods.

Without questioning the importance of having more realistic optimization models and
more efficient optimization methods, neither of these two previous directions seems to
be sufficient for ensuring an effective use of advanced optimization methods in decision
support tools. An alternative approach to bridge this gap between optimization methods
and decision support systems is to consider that the decision maker can actively partici-
pate in the optimization process. This aspect is investigated by interactive optimization
approaches. With an adequate interaction between an optimization system and its users,
the optimization model can be enriched to fit the real problem, the search process can
be guided for improving its efficiency, and the user can better understand the system. In
short, the main goal of interactive optimization is to turn efficient optimization methods
into effective decision tools.

In interactive optimization, the user of an optimization system is involved in the op-
timization process and can change the result or performance of the optimization. This
human-in-the-loop approach of the optimization, illustrated in Figure 1, is based on some
important assumptions that are often disregarded for automated optimization systems. In
particular, the design of an automated optimization system supposes that the optimization
problem at hand can be appropriately modeled according to the decision context, and the
optimization procedure can be adequately parameterized before using the system under
real conditions. In this context, it makes sense to aspire to a fully automated optimiza-
tion system. In contrast, an interactive approach recognizes some limits to modeling and
parameter setting in a real situation, and values the user’s expertise in the application
domain that can be exploited by the optimization system.

3



2. CONTEXT AND DEFINITIONS

This idea of involving users in the optimization process is not new, and has been in-
vestigated since the early 70s in the context of multiobjective optimization [Benayoun
et al., 1971, Wallenius, 1975]. Later, the interactive approach was generalized to other
optimization problems. In [Fisher, 1985], the author already mentions applications to ve-
hicle routing, location, and scheduling problems. There are now a multitude of interactive
optimization methods, ranging from rudimentary trial-and-error to more sophisticated
approaches such as interactive multiobjective optimization [Miettinen et al., 2008] and
human-guided search [Klau et al., 2010]. Furthermore, it is no longer controversial to
consider that man-machine interaction can be valuable for solving complex optimization
problems [Barthélemy et al., 2002]. However, it is surprising that relatively little attention
is given to the study of the interaction in the optimization field.

This paper attempts to provide a detailed review of interactive optimization methods
and to connect studies that until now have been mostly examined separately in the research
literature. The existing literature does not yet include a survey on interactive optimiza-
tion that covers all interactive approaches for solving optimization problems. Previous
overviews focus on specific approaches such as human-guided search [Klau et al., 2010],
interactive evolutionary computation [Takagi, 2001], and interactive multi-objective op-
timization [Miettinen et al., 2008]. However, none of those previous works presents a
complete survey of interactive optimization approaches.

The objectives of this article are, first, to provide a survey of interactive optimization
approaches for solving complex optimization problems and to present the main motivations
and limitations of these approaches. Second, a classification of interactive optimization
methods is proposed. This classification aims at analyzing existing interactive optimiza-
tion methods and supporting the development of new interactive optimization methods.
The connections we make between the different methods through the classification also
aim at avoiding the pitfalls that have already been identified when a new method is de-
signed. Finally, in this article we briefly discuss current issues in the domain of interactive
optimization and outline some research directions that, in our opinion, constitute major
research perspectives of the field.

The remainder of this paper is organized as follows. In Section 2, the main terminology
concerning optimization problems and interactive optimization systems is introduced. Af-
terwards, in Section 3, obstacles to the usage of optimization methods in decision support
tools are described, and based on these obstacles, the main motivations of interactive opti-
mization approaches are identified. Then, in Section 4, a survey of interactive optimization
approaches is given. In this survey, besides presenting examples from the literature, limits
of the approaches are discussed. In Section 5, a classification of interactive optimization
methods is introduced and representative methods are classified according to the proposed
criteria. Finally, in Section 6, conclusions and research perspectives can be found.

2 Context and definitions
This paper focuses on interactive optimization methods in the field of Operations

Research. The review and the associated classification presented in the remaining sections
are thus limited to this domain. In particular, it addresses interactive systems aiming
at solving optimization problems by computing candidate solutions. Hence, the studied
interactive process is a part of a larger decision-making process. It should be noted that
the domain of interactive optimization is closely tied to the domain of interactive machine
learning (we refer the reader to [Amershi et al., 2014] and [Fails and Olsen, 2003] for
an overview of interactive machine learning). More generally, several interconnections
exist between the domains of machine learning and optimization. The boundary between
those two domains could be a somewhat blurry because optimization tools can be used for
solving machine learning problems, and machine learning techniques can also be applied for

4



2. CONTEXT AND DEFINITIONS

solving optimization problems [Bennett and Parrado-Hernández, 2006, Sra et al., 2012]. In
this section, we clarify the boundaries of the domain of interactive optimization by, firstly,
defining what an optimization problem is, and then, by stating in which system and
during which process the interaction of interest occurs. In addition, the core concepts and
the specific terminology used throughout this paper to describe interactive optimization
methods are introduced.

2.1 Optimization model definition

In an optimization problem P , we are given a set X representing the solution space and
an objective function f : X → R. The objective is to find an optimal solution in the set X
according to the objective function f . More precisely, for minimization problems we have
to find a solution x∗ ∈ X with f(x∗) ≤ f(x) for all x ∈ X , for maximization problems we
have to find a solution x∗ ∈ X with c(x∗) ≥ c(x) for all x. Any solution x of P is specified
by a set of values assigned to the decision variables. The possible values are limited by a
set of constraints, often given in form of equalities, inequalities or logical expressions. In
short, a mathematical model of an optimization problem, also called optimization model,
includes a set of decision variables, an objective function, and a set of constraints. In
order to find a solution x with the best possible value f(x), exact or heuristic optimization
procedures have to be developed which are used to find optimal or near-optimal solutions.

Generally both the objective function and the set of constraints are expressed with
generic parameters that need to be set for representing a particular problem instance. For
example, if the problem involves a graph, the problem can be modeled with “generic” sets
of vertices V = {v0, · · · , vn} and edges E = {(vi, vj)|vi, vj ∈ V }. The problem-data, which
are usually known only when the problem must be solved, allows to instantiate such pa-
rameters. This process which includes problem-modeling and then problem-instantiation
is further detailed in Section 2.3.

Usually, an optimization model captures partially the real problem for which a deci-
sion must be made. The differences between the optimization model and the real problem
come, for instance, from simplifications that are necessary to make the problem compu-
tationally tractable or can be related to the inherent limits of the modeling process (i.e.,
requiring abstractions and generalizations). Since this divergence between real optimiza-
tion problems and their models plays an important role in interactive optimization, we
adopt specific vocabulary in order to distinguish these two aspects. In this article, a real
problem or real decision maker’s problem refers to the actual context of an optimization
problem for which a decision must be made. The representation of this problem in the
optimization system is referred to as an optimization model. Similarly, a criterion refers
to the measures used to compare different alternatives of a real problem, whereas the ob-
jective designates a mathematical function for evaluating the solutions of an optimization
model.

For example, the Capacitated Vehicle Routing Problem (CVRP) is a well-known op-
timization problem that consists of designing the routes of a set of vehicles so that each
route starts and ends at the depot, each customer is visited exactly once, and the demand
of any route does not exceed the capacity of the vehicles. A solution to this problem is a
set of routes defined on a given graph, and the objective is to minimize the total length of
the routes. A real context for this optimization problem could be the design of itineraries
for a delivery service. The CVRP is a simplified model of this delivery problem since the
routes on the CVRP’s graph contain less information than the real itineraries, and the
objective function is only an approximation of the real criterion to minimize the trans-
portation costs. The latter criterion may combine some aspects that are difficult to model
such as the delivery problem, the real staff and vehicle costs, as well as the uncertainty
related to the duration of itineraries. This gap between the optimization model and the

5



2. CONTEXT AND DEFINITIONS

Figure 2: Components of an interactive optimization system.

real problem motivates interactive approaches, which is further discussed in Section 3.1.

2.2 Key components of an interactive optimization system

In any optimization system, the optimization model and the optimization procedures
are the core components that provide solutions to problem instances. In interactive op-
timization systems, both the optimization model and the procedures are used within in-
teraction loops with the user as depicted in Figure 2. In this general architecture, the
optimization model contains the definition of the decision variables, objectives and con-
straints of the problem to be solved. When the optimization problem is instantiated, the
problem data determine the parameter values of the optimization model.

The optimization procedures responsible for solving the problem instances are directly
connected to the optimization model. They aim at both providing candidate solutions
to the user and producing intermediate results. In the terminology used in this paper,
a candidate solution is a solution to an optimization problem that can be considered by
the user as a final solution. An intermediate result is information obtained during this
optimization process and is not necessarily a solution. An intermediate result could be an
incomplete solution or information about the current state of the optimization process.
For example, if a branch-and-bound procedure is used for solving a problem instance, the
upper and lower bounds can be provided as intermediate results for informing the user on
the progress of the solving procedure.

Optimization procedures, thus, produce some solutions and intermediate results that
are presented to the user. The user, in turn, can provide a feedback. As described in
Section 4, the nature of this feedback can take various forms. For example, the user may
select, among a set of solutions, the most promising ones as in interactive evolutionary
algorithms. The user feedback can also consist of adjustments of parameter values for
some interactive multiobjective optimization methods. It can also correspond to a set of
modifications of a candidate solution as in interactive reoptimization.

In order to close the loop, the user feedback is used by the system to adjust the op-
timization procedures or the optimization model through a preference model [Miettinen
et al., 2008, Wessels and Wierzbicki, 2000]. A preference model corresponds to the in-
formation that is derived from the user’s feedback. It is used to modify the optimization
model or the optimization procedures. This preference model can take many forms. In its
most simple form, the preference model can be limited to parameters of the optimization

6



2. CONTEXT AND DEFINITIONS

problem, such as the weight values in an objective function. In a more advanced form, the
preference model can be heuristic information that guides the optimization procedure.

In the optimization domain, the term preference model essentially refers to preference
information related to the objectives. However, in this article, we propose a broader sense
that covers not only the information that captures user’s preferences on the optimization
model, but also information that impact the optimization procedures. Therefore, in the
architecture presented in Figure 2, the preference model covers both the optimization
model and the optimization procedures.

In the survey and classification of the literature presented in Sections 4 and 5, a dis-
tinction is made between interactive methods where the preference model is intended to
modify the optimization model, and methods for which the preference model mainly im-
pacts the optimization procedures. In the first case, feedback loops aim to modify the
optimization problem. This is referred to as problem-oriented interaction (e.g., adjust-
ment of weight values in an objective function). The main problem-oriented interaction
approaches reviewed in this paper are interactive reoptimization (Section 4.2), interactive
multiobjective optimization (Section 4.3) and interactive evolutionary algorithms (Section
4.4). In the second case, feedback loops aim to adjust the optimization procedure. This
is referred to as search-oriented interaction (e.g., adjustments of the parameter setting of
an optimization procedure). In this survey, human-guided search approaches (Section 4.5)
are introduced as search-oriented interaction.

Finally, the general architecture presented in Figure 2 may also include some form of
preference learning. Although it is not systematically implemented, a preference learning
procedure aims to generalize the user feedback in order to create a model of the user’s
preferences. For example, in some interactive evolutionary algorithms, a classifier is trained
with the user’s feedback in order to capture the preferences of the user (Section 4.4). This
classifier is used to enrich the optimization model (i.e., add new relevant information to
the current problem instance, such as new constraints). In this case, there is a learning
procedure that explicitly generalizes the user’s feedback. In contrast, the user feedback
can also be integrated into the preference model. For example, a value provided by the
user can be directly assigned to a parameter of the optimization model. In this case, there
is no learning procedure, although the user preference model still exists. In this article,
these alternatives are respectively called model-based preference integration and model-free
preference integration (see Section 5).

2.3 Interactive optimization within the decision process

In this study, we only consider interactive methods that are used in a decision process
for solving optimization problems. In Operations Research, the decision process consists
of all activities from the identification of a problem to the implementation and control of a
decision. However, in the context of an optimization-based decision support process [Shim
et al., 2002], two main phases can be distinguished [Forgionne, 2002, Vercellis, 2009], as
seen in Figure 3. The first phase is the design process that is necessary to implement
an optimization system. The second phase is the decision-making process per se, during
which an instance of an optimization problem is solved. The interaction between the user
and the optimization system occurs during this second phase.

In order to clarify in which activities the studied interaction takes place, a brief descrip-
tion of the design process is provided before detailing the activities of the decision-making
process. The reader may refer to [Hillier and Lieberman, 2001, Chapter 2] for more details
on the design process of an optimization system.

The first step in the design process is the problem analysis. It consists in defining
the scope as well as the criterion and constraints of the optimization problem. More
specifically, this step involves gathering information about the problem, identifying the

7



2. CONTEXT AND DEFINITIONS

F
ig

u
re

3:
D

esign
a
n

d
d

ecision
-m

ak
in

g
p

ro
cesses

related
to

an
in

teractive
op

tim
ization

sy
stem

.

8



2. CONTEXT AND DEFINITIONS

data that can be used for making a decision, and defining the decision criteria. In addition,
experts and analysts involved in the design process specify the requirements related to the
optimization system. In particular, the expected performance of the optimization system
in terms of computation time and quality of results are clarified. The possible interactions
between the user and the optimization system are also identified during this initial phase
of the design process.

Once the problem is analyzed, a mathematical optimization model is generally de-
veloped during the problem modeling step. This step aims to explicitly represent the
optimization problem. The development of a procedure for solving the problem corre-
sponds to the third step, referred to as the optimization procedure design step. Next, this
procedure is tuned and tested during the next two steps of the design process, namely
the parameter setting and test of the optimization procedure. Finally, the optimization
procedure is integrated into the system in which it will be used.

The design process results in an optimization system that can be used for making
decisions. This second phase, the decision-making process, is summarized in the lower part
of Figure 3. In short, the decision-making process considers all steps from the definition of
the problem-data for the problem instance to solve, to the implementation of a decision.
As in any decision-making process, the steps presented in Figure 3 may overlap, and loop-
backs to earlier stages of the process are frequent. We refer the reader to [Shim et al.,
2002, Phillips-Wren, 2008] for an overview of the decision-making process in the context
of intelligent decision-support systems.

The first step of the decision-making process is the problem instantiation. It consists
in defining the problem’s data that are specific to the decision situation. For instance, if
the optimization problem is a vehicle routing problem, the values that characterize the
vehicles, the demands and the road network are specified during this phase. The data
given to the system at this step do not contain subjective information from the user but
are exclusively objective data from a source such as a database.

Next, the user may provide initial preferences during the instance-specific parameter
setting step. This parameter setting may concern the optimization procedure with the
adjustment of strategic parameters such as the stopping criterion of the optimization.
The parameters may also be related to the optimization problem. For instance, initial
weights for different terms of the objective function may be provided during this step.

Next, during the optimization step, also referred to as solution process or solving
process, an optimization procedure is used to generate one or several candidate solutions.
For most interactive optimization approaches, the interaction between the user and the
interactive optimization system occurs during this step. Generally, the preference model
is interactively adjusted until a satisfactory solution is found.

The output of the optimization is a decision alternative (i.e., a solution) that must be
validated before its implementation. This is done during the validation and decision step.
More specifically, the decision alternative is considered and analyzed with respect to the
real decision context. In practice, the actual decision context and criteria may be richer
than the decision information and criteria used during the optimization step. In addition,
the decision-maker may be different from the user of the optimization system. During this
step, if a decision alternative is rejected, another solution must be generated.

Finally, when the alternative is validated and implemented, a feedback phase may be
considered in order to adjust the next decisions with known effects of previous ones.

As mentioned earlier, interactions between the optimization system and the user mainly
occur during the optimization step. However, because of feedback loops and the fact that
the decision-making process is repeated for multiple problem instances, interactions that
impact the optimization problem or procedure can also take place during other steps.

9



3. LIMITS OF OPTIMIZATION METHODS AS DECISION SUPPORT TOOLS

For instance, the instance-specific parameter setting can be done on the basis of previous
optimization results and regarded as a part of the interactive process (e.g., trial-and-error
approach, Section 4.1). Similarly, both the validation of a decision alternative and the
feedback on a tentative decision can also be taken into account in subsequent iterations of
the decision process.

3 Limits of optimization methods as decision support tools
The use of optimization methods to support decision-making has been proven successful

in the context of a long list of applications. However, optimization methods can have
limits with respect to their integration within decision support tools. In particular, this
section identifies within the literature three limits that can justify, in some contexts, the
use of interactive optimization methods: (1) the inherent limits of optimization models;
(2) the inadequate performances of optimization procedures; and (3) the non-acceptance
and misunderstanding of optimization systems by their users. This section provides an
overview of these limits.

3.1 Inherent limits of optimization models

As previously mentioned, an optimization model is a partial representation of a real
problem. An optimization model contains unavoidable inaccuracies that may be problem-
atic for supporting a decision [Roy, 1989, 2005, Bouyssou, 1990]. These inaccuracies are
the result of various limitations of the modelling process:

Approximation of complex problem’s aspects First, the problem to model may con-
tain criteria or constraints that are difficult to quantify. This situation usually occurs
when dealing with rich optimization problems and problems related to human ac-
tivities such as vehicle routing problems or staff scheduling problems. For these
problems, criteria such as risks, tasks’ arduousness or perceived duration are partic-
ularly difficult to model and are necessarily approximated in an optimization model.

Simplification for model tractability In addition, it may be necessary to simplify the
specification of an optimization problem in order to apply a computational optimiza-
tion approach. Common examples of such a simplification are the combination of
several criteria in a single objective function, or the approximation of variables re-
lationships by linear models.

Limited specifications Besides these obstacles inherent to the optimization problem,
inaccuracies of an optimization model may also be related to the difficulty in obtain-
ing a complete specification of the problem for designing the model. The experts or
analysts who design the optimization model may only have a partial knowledge of
the actual context of the optimization problem.

Lack of resources Finally, the time and budget for designing and implementing an op-
timization model are limited, thus limiting possible refinements of the model.

Overall, an optimization model may underestimate or ignore some aspects of the real
problem. This can result in the computation of either unrealistic or unfeasible solutions,
or solutions that do not capture domain-related characteristics.

In order to overcome these limitations, a first approach consists in extending general
optimization models with additional features that better describe the problems at hand.
In Operations Research literature, it is common to see a large number of variants of an
initial problem model. For instance, a vehicle routing problem model can be enriched
with time-window constraints, transshipments or by considering a heterogeneous fleet of
vehicles [Savelsbergh and Sol, 1995]. The additional features such as hard constraints, soft

10



3. LIMITS OF OPTIMIZATION METHODS AS DECISION SUPPORT TOOLS

constraints and objective functions, allow enriching the initial optimization model, and
contribute to design more realistic optimization models. However, introducing additional
aspects in an optimization model may also reduce the scope of applications, and can
potentially increase the difficulty of implementing and using an optimization method.

Approaches such as multiobjective optimization, stochastic optimization and robust
optimization, are generic extensions of optimization problems that also aim at improving
optimization models. In multiobjective optimization [Branke et al., 2008, Ehrgott and
Gandibleux, 2000], the problem to solve is modeled with a set of objective functions to op-
timize instead of a single objective. This allows the decision maker to express preferences
with respect to objectives’ priority. Consequently, the inaccuracy induced by aggregating
criteria is reduced and the decision support tool is more likely to be adopted by the user.
Three approaches to capturing decision-maker’s preferences about objectives functions
are usually distinguished [Ehrgott and Gandibleux, 2000]. First, when the preferences
definition is done a priori, the optimization method returns a solution that meets these
preferences. Next, when the preferences definition is done a posteriori, the optimization
method must return a set of non-dominated solutions, which is then analyzed by the de-
cision maker to identify an appropriate solution. Finally, preferences can be progressively
introduced or adjusted interactively. This interactive approach to capture user preferences
is described further in the next section.

Other approaches to deal with model limitations are stochastic and robust optimiza-
tion. These approaches aim to deal with the inherent uncertainty of a decision context.
Instead of searching for a solution to a deterministic problem, the objective, in the pres-
ence of uncertainty, is to optimize the expected value of a criterion while minimizing the
associated risk. Stochastic programming [Kleywegt and Shapiro, 2001] enables the mod-
eling of the uncertainty by introducing random variables in the optimization model. In
robust optimization [Ben-Tal et al., 2009], no specific distribution of the random elements
is known, but a set of possible scenarios is introduced. In the most conservative setting,
the objective is to find a solution that is feasible for all scenarios (strict robustness). In
other words, the worst-case over all scenarios is optimized. However, because a solution
may have a poor objective value, other concepts have been proposed. Since not all vari-
ables must be fixed before the realized scenario is known, the solution variables may be
split into two parts (adjustable robustness, see [Ben-Tal et al., 2009]). While some of them
are fixed at the beginning, the remaining variables can be adjusted after the scenario is
revealed. Finally, recovery robustness [Liebchen et al., 2009] enables the repairing of parts
of the solution using a recovery algorithm.

Despite these improved modeling functionalities, some limitations still persist. In par-
ticular, enriching an optimization model may increase the difficulty of finding an efficient
optimization method. For instance, introducing uncertainty or robustness aspects in an
optimization model increases its complexity, and few efficient computational tools have
been developed to deal with these aspects [Beyer and Sendhoff, 2007]. Finally, regardless
of the efforts to improve the optimization model during the design, some decision crite-
ria may remain unknown until the decision-making process takes place. In this context,
interactive approaches may provide an alternative to overcome such limitations. Indeed,
elements of the actual problem that are not initially present in the optimization model may
be tackled during the optimization process. Hence, the user’s expertise may be exploited
in order to enrich or adjust the optimization model.

3.2 Performance inadequacy

The quality and efficiency of the optimization procedure are important conditions for
a successful integration of an optimization method into a real-world software application.
Several limits may hinder the implementation of such a method from meeting user perfor-

11



3. LIMITS OF OPTIMIZATION METHODS AS DECISION SUPPORT TOOLS

mance requirements. Beside the inherent complexity of some optimization problems, we
have identified four major limits which cover different steps of the design process:

Insufficient specifications of performance requirements First, the impediment to
meet performance requirements may be related to a lack of precision in end-users’
requirements. In particular, during the design process it may be difficult to know
what makes an adequate compromise between computation time and solution quality.

Choice of the optimization method Next, the determination of the adequate opti-
mization method remains difficult at the design stage [Rothlauf, 2011] and it turns
out to be a critical point for the efficiency of the optimization. This design choice
often results from the determination of a trade-off between the tractability of the
problem to solve and the validity of the chosen model. In other words, how the model
can be simplified so that it can be easily solved while maintaining its validity?

Parameter setting In addition, parameter setting may also have a great impact on
the overall efficiency of an optimization procedure. For both exact and approximate
optimization approaches, parameter setting still represents a challenge [Hutter et al.,
2010b, Adenso-Dı́az and Laguna, 2006].

Lack of test data Finally, the data used to test the method at the design stage may sub-
stantially differ from the real data used during the decision-making process. In that
case, it is difficult to both evaluate the performance of the optimization procedures
and to know if performance requirements will be met.

These different factors can directly impact the overall performances of the optimization
procedure. A general research direction to improve performance involves the develop-
ment of new optimization methods. Concerning parameter setting, various automatic
approaches have been proposed. Tuning procedures were proven successful in the case of
metaheuristics [Birattari, 2005] as well as exact optimization algorithms [Adenso-Dı́az and
Laguna, 2006, Hutter et al., 2010b]. There is also a growing interest in optimization meth-
ods that automatically generate efficient search strategies such as hyper-heuristics [Burke
et al., 2013]. However, purely automated approaches are limited when the users’ require-
ments are not clearly defined, or when little or no real data is available for testing the
method. In these cases, interactive optimization can be instrumental in capturing, during
the optimization process, user expectations and knowledge about the targeted problem
instance.

3.3 Non-acceptance and misunderstanding of optimization systems

Another common limit of optimization methods concerns the user acceptance of the
optimization system and the user’s confidence in the solutions provided by the method.
According to [Davis et al., 1989], user acceptance is mainly determined by the perceived
usefulness and perceived ease of use of a system, this is known as the Technology Accep-
tance Model (TAM). For further details on this model and discussions about its short-
comings we refer the reader to [Legris et al., 2003, Bagozzi, 2008]. For a decision-support
context, the confidence or trust of the user in the system is another key aspect for its
acceptance [Lee and See, 2004, Muir, 1987]. The confidence is particularly important for
an optimization system as the system must solve complex problems that cannot be fully
apprehended by the user. In short, the perceived usefulness, perceived ease of use and
confidence in the system are essential for the acceptance of an optimization system by its
users.

Concerning the confidence in an optimization system, two problematic situations may
occur. A user may have no confidence in an efficient system, or have confidence in an

12



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

inefficient one. In the first case, the user may reject solutions that would result in good
decisions. In the second case, the user overestimates the effectiveness of the optimization
system, and may accept solutions that could be improved by other means. In both situa-
tions, we can consider that the user misunderstands the value of the optimization system’s
results.

The problem of confidence in an inefficient decision support system has been studied in
[Davis and Kottemann, 1994]. In an experiment, the authors compare the perceived per-
formance of two decision support approaches. The first one is a ‘what-if’ analysis approach
in which the user tests different alternatives. The second approach is based on decision
rules that generate recommendations without involving the user in the recommendation
process. The experiment was performed on 52 subjects that used both approaches. Per-
ceived and actual performances were compared. Results indicate that the decision rules
approach was not perceived as more efficient than the what-if analysis even though it
provided better results. In other words, users had no confidence in the efficient approach
and had confidence in the less efficient approach. This illustrates the importance of user
perception and confidence as it eventually leads to the system acceptance or not.

Interactions appear to have a positive impact on user’s acceptance and confidence.
Interactions, and thus interactive optimization, seem to help the user learn about the
optimization problem [Belton et al., 2008]. It also helps the user better understand the
optimization procedures [Klau et al., 2002]. With a better perception of the system, the
user is more inclined to accept it. In addition, adequate interactions may also prevent
situations in which a user over-estimates the effectiveness of an optimization system.

The interactive methods reviewed in the next section have been primarily designed to
address the inherent limits of optimization models and the difficulty to obtain adequate
performances. However, the understanding and acceptance of the system by users are
often mentioned in the literature as a second argument to justify an interactive approach.
The fact that interactions help the user learn about the optimization problem and its
associated procedures is a characteristic shared by most interactive optimization methods.

4 Survey of interactive optimization approaches
This section presents a survey of existing interactive optimization approaches. These

approaches can be defined as optimization methods with which an end-user or decision-
maker can interact. This interaction takes place during a decision-making process and
allows the user to significantly modify the results or performances of the optimization
system. Considering this definition, this overview focuses on interaction between human
users and optimization systems. Interaction with a non-human third party such as in
optimization-simulation coupling (e.g., [Fu, 2002]) is out of the scope of this survey. In
addition, the interaction implies that several information exchanges can be performed, and
that the user’s feedback depends on intermediate optimization results (i.e. the interaction
process is an interaction loop). The post-analysis of optimization results is not considered
as an interaction, unless it is used to modify the optimization system for solving other
problem instances. Finally, dynamic optimization (e.g., [Nguyen et al., 2012]) is not
considered in this overview since the dynamic nature of data is not a user’s feedback on
the optimization system, even if a human operator provides these data.

Overall, five classes of interactive optimization approaches are presented in this sec-
tion. The first two, trial-and-error and interactive reoptimization, correspond to basic
interactive methods. They are commonly used in practice, however, they have a limited
coverage in the research literature due to the trivial nature of the interaction. The three
remaining classes, namely interactive multiobjective optimization, interactive evolution-
ary computation and human-guided search, are more sophisticated approaches for which
extensive literature exists. In addition to these five classes, other interactive optimization

13



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

methods, which do not correspond to any of these classes, are briefly presented in Section
4.6.

The presentation of these classes of interactive optimization approaches follows the
same outline. First, the general principle of the interaction is explained. Next, illustrative
examples drawn from the literature are presented. Finally, their main limitations are
discussed.

4.1 Trial and error

Trial-and-error is one of the simplest approaches for involving a user in the optimiza-
tion process. In the context of interactive optimization, a trial-and-error method can be
defined as an iterative and direct adjustment of the optimization system by the user. More
precisely, the user feedback is not generalized and corresponds to preference information
used by the optimization system. In addition, each iteration of the optimization pro-
cess is independent of the previous one. A common example is when the user modifies
optimization parameters and restarts the optimization procedure.

Trial-and-error approaches can be used for either modifying elements of the optimiza-
tion model or adjusting the optimization procedure. In the first case, the approach can
be seen as a what-if analysis. The user simply adjusts data, constraints, or objectives of
the optimization problem, and the optimization system provides a solution that evaluates
these modifications. In the second, and more advanced case, the user knows the basic
principles of the optimization process, and more specifically, the role of some parame-
ters. Therefore, the user can adjust the value of these parameters in order to adapt, in a
rather limited manner, the optimization process. For instance, this can be useful to adjust
convergence speed or to increase the diversity of a heuristic search procedure.

An early successful application of trial-and-error interactive optimization is described
in [Braklow et al., 1992]. The authors developed an optimization system for the design
of delivery routes of a freight service. The main interaction is based on a trial-and-error
approach. The user can modify some aspects of the problem in order to reflect features that
are not modeled by the optimization problem. Subsequently, a new solution is generated
by the system. The optimization system, called SYSNET, has been used by the freight
company YRC (formerly Yellow Transportation) resulting in substantial cost savings.

A more recent approach, based on an interactive trial-and-error approach, is presented
in [Cesta et al., 2003]. This approach deals with the determination of schedules for data
transmission from a space probe. The optimization system called Mexar was developed
for the Mars-Express mission started in 2003 and extended until 2014. The optimization
problem consists in determining sequences of data packet transmissions within a set of
time frames. It is a variant of the bin packing problem. The problem is modeled as a
constraint satisfaction problem and solved using heuristics and metaheuristic search meth-
ods. The user can interact with the optimization system, using trial-and-error, for both
adjusting the search strategy and modifying constraints. More precisely, the user monitors
the optimization procedure in order to identify potential problems such as stagnation of
the search around a local-optimum. When the user identifies a problem, he can adjust pa-
rameters and rerun the optimization procedure. Similarly for the optimization model, the
user can iteratively refine the problem in order to integrate problem-domain knowledge,
by relaxing or adding constraints. An updated version of this tool, called Mexar-2, is used
at the European Space Agency since 2005. It is based on the same interactive framework
[Cesta et al., 2007].

Another trial-and-error approach, presented in [Halim and Lau, 2007], is used for
tuning trajectory metaheuristics, i.e. metaheuristics based on local-search. The authors
propose a framework for visualizing the behavior of the search algorithm and identifying
problematic behavior such as stagnation of the search. The visualizations help the user to

14



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

adjust parameters or to select new components for the strategy. This approach is applied
to the problem of tuning a tabu search method. For this case study, the user is able to add
some strategic rules that modify the search behavior when specific conditions are met.

In these different trial-and-error methods, the user constructs a mental model of the
optimization problem and optimization method. He learns about the relationships be-
tween the parameters or components he changes and the response of the system. This
implicit knowledge allows the user to progressively adjust the system in order to meet his
preferences. Although it is quite intuitive and simple to implement, this form of interac-
tion has several weaknesses. First, a trial-and-error approach does not use a memory or
computational model of the user’s preferences. The interactive process relies on the mem-
ory of the user for controlling the exploration of different configurations and for comparing
the different alternatives. Therefore, some cognitive biases can affect the exploration and,
more importantly, the cognitive load may limit the user in its exploration. The direct con-
sequence of the important cognitive load is that only a limited number of configurations are
considered at the expense of the user’s preferences. A second major limit of trial-and-error
approaches is that the user requires some knowledge about the optimization procedure or
optimization model for which he changes the parameters or components. Usually, we as-
sume that users of decision-support tools have an expertise in the application domain, but
it is risky to consider that users properly understand the optimization procedure or the
model of the optimization problem [Barthélemy et al., 2002]. In order to mitigate these
aspects, appropriate visualizations of results are necessary to support the trial-and-error
process. Some visualization tools and graphical representations have been proposed in
the context of optimization systems. In [Jones, 1994], the author reviews a wide range of
representations of optimization results. In [Miettinen, 2014], the author gives a survey of
visualization methods for multiobjective optimization. However, considering the previous
limitations and even with appropriate visualizations, trial-and-error seems rather limited
and the other interactive approaches presented in the following sections are probably more
advisable ways to take into account the user’s preferences.

4.2 Interactive reoptimization

Contrary to trial-and-error that can be used for either adjusting the optimization prob-
lem or tuning the optimization procedure, interactive reoptimization only aims at refining
the optimization problem. In interactive reoptimization, the refinement is done by progres-
sively adjusting a candidate solution using a reoptimization procedure. In this article, we
introduce the term interactive reoptimization to designate reoptimization methods that
are used in an interactive context. Other reoptimization methods have been proposed
for dynamic optimization problems without any user interaction, for instance in [Ausiello
et al., 2007] and [Zych, 2012]. In dynamic optimization problems, the problem instance
changes over time, and the solution has to evolve with the updated problem instance.
However, the reoptimization in a dynamic context does not correspond to an interactive
optimization approach as the perturbations do not come from the user.

As mentioned previously, an optimization model may contain some simplifications or
inaccuracies that require some adjustments by the user during the decision-making process.
To correct these inaccuracies, the user can directly modify a candidate solution provided by
the optimization procedure. However, manually modifying a solution has major drawbacks
if it is not assisted by an optimization procedure. First, it may be difficult for the user to
apprehend all constraints and objectives of the optimization problem when a solution is
manually edited. In addition, due to the complexity of considered optimization problems,
it is generally difficult or impossible to reflect the modification to the whole solution. The
fact that a local modification in a solution implies adjusting other parts of the solution is
referred to as the cascading or propagation effect [Pinedo, 2012]. Interactive reoptimization

15



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

aims at overcoming these obstacles. In this approach, solutions modified by the user are
reoptimized. The reoptimization procedure globally optimizes a solution to take into
account local modifications applied by the user.

Starting from an initial candidate solution, the interactive reoptimization process al-
ternates between two phases. First, the user specifies changes to be made on the current
solution. Second, a reoptimization procedure is applied to perform the changes and to
optimize the rest of the solution accordingly. The process is iterated until a satisfactory
solution is obtained.

For the reoptimization, some specific objectives or constraints are added to the problem
model. First, a constraint or objective ensures that the changes requested or performed
by the user on the previous candidate solution are present in the reoptimized solution.
In addition, an objective can be added to minimize the distance between the reoptimized
solution and the previous candidate solution. This minimization of the impact of the
reoptimization is required to maintain coherence in the interactive process. If possible,
the reoptimized solution should be similar to the previous solution because the changes
requested by the user have been expressed on the basis of the previous solution. With a
completely different reoptimized solution, these changes may lose their meaning. Overall,
minimizing the distance between the reoptimized solution and the previous solution favors
the convergence toward a satisfactory solution for the user. This property of the reopti-
mization to minimize the perturbations it induced is referred to as the stability [Hamel
et al., 2012].

Basic interactive reoptimization approaches are presented, for example, in [van Vliet
et al., 1992] for a variant of vehicle routing problems with time windows, and in [Pinedo,
2012] for different flow shop problems. In both cases, the user can manually modify a
solution, and then apply a reoptimization procedure. The reoptimization procedure is
applied on a portion of the solution while modifications made by the user are frozen, i.e.
the parts modified by the user remain unchanged after the reoptimization.

In [Hamel et al., 2012], a more advanced interactive reoptimization approach is pre-
sented for linear optimization. The proposed method is used to select an adequate solution
from the set of optimal solutions. The interactive process is as follows. A first “average”
optimal solution is computed and presented to the user. Next, the user can modify the
values of some decision variables within the given ranges of optimality. A new optimal
solution is then computed by a reoptimization procedure to satisfy the desired changes.
Finally, the user can refine his preferences and reoptimize the solution until a satisfactory
solution is obtained. In [Hamel et al., 2012], the authors propose four variants of their
reoptimization method and study two properties of reoptimization they call stability and
responsiveness. The stability, as previously mentioned, is the ability of a reoptimization
procedure to minimize the changes it induced on a solution. The responsiveness is the
property of the reoptimization procedure to produce a solution in a short time. They
propose different procedures to optimize these two properties, including different objec-
tives for reducing the reoptimization distance and the reuse of previous results to improve
the computation time. The experimental results indicate that the computation time for
reoptimizing a solution is substantially shorter than the time for obtaining an initial op-
timal solution. The authors report a maximum reoptimization time of 600 milliseconds
for problems that necessitate up to 45 minutes for the initial optimization. In addition,
the introduction of an objective to ensure stability significantly reduces the distance be-
tween candidate solutions and the corresponding reoptimized solutions, thus favoring the
interactive process.

Another interactive reoptimization approach that makes use of an explicit stability
objective is proposed in [Meignan, 2014]. The reoptimization approach is applied to a

16



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

shift scheduling problem. The user can request some changes to be made on a candidate
solution and then apply a reoptimization procedure. The objective function for the re-
optimization combines the initial optimization objectives, an objective for applying the
changes requested by the user, and another objective to minimize the modifications in-
duced by the reoptimization (the stability objective). In [Meignan, 2014], a computational
study of the proposed reoptimization procedure is performed. For the considered problem
it is shown that a global reoptimization procedure is required to adjust candidate solu-
tions even when requested changes concern a very limited part of the solutions. This latter
study also illustrates the difficulty of adjusting a solution.

A shortcoming of interactive reoptimization is that the changes requested by a user may
impair the quality of the solution by over-constraining the problem in comparison to an
exact expression of the missing feature. This limit of interactive reoptimization has been
observed in [Meignan, 2015] for an experiment on interactive reoptimization conducted
with 16 test subjects. As explained previously, interactive reoptimization allows a user
to introduce some constraints or objectives that are not initially designed, or allows him
to adjust inaccurate constraints or objectives. The “missing features” (i.e. constraint
or objective not modelled) are expressed by the user with local changes of a solution.
However, these changes may not represent the exact missing features, and therefore the
user may need to request more changes than it would be necessary to correct optimally
the solution. This excess of change requests can potentially impairs the quality of the
solution obtained after the reoptimization.

4.3 Interactive multiobjective optimization

Interactive multiobjective optimization is probably the most prominent class of in-
teractive methods in the optimization literature. These interactive methods, as well as
non-interactive multiobjective optimization methods, address the problem of determining
an adequate compromise between different objectives [Branke et al., 2008].

A large majority of optimization problems solved by decision support tools contains
multiple conflicting optimization criteria. When the optimization problem is designed, it
may be difficult to combine these criteria in one single objective function. The aggregation
of different objectives is generally difficult because the relation between the objectives can
be complex, and an adequate trade-off may only be known at the time of the decision-
making. Therefore, instead of aggregating the objectives which could result in inaccuracies
in the problem model, in multiobjective optimization they are kept separated, and the
appropriate trade-off is determined during the decision-making process.

For multiobjective optimization problems, the Pareto-front represents the set of so-
lutions for which no improvement in one objective is possible without deteriorating the
value of at least one other objective. Each solution of the Pareto-front corresponds to
a particular trade-off between the objectives. The preferences provided by the user dur-
ing the decision-making process should allow the determination of an adequate solution
within this set. Three modes for defining preferences are usually distinguished [Ehrgott
and Gandibleux, 2000]. The preferences can be provided by the user before the optimiza-
tion step during the parameter-setting. In this a priori mode, the optimization procedure
generates a solution that matches, as best as possible, the preferences of the user. In
an a posteriori mode, the user integrates his preferences after the optimization step. In
this case, the optimization method determines a set of solutions that approximates the
Pareto-front. Then, this set is analyzed by the user to identify an appropriate solution.
Finally, the preferences can be defined interactively during the solving process.

The basic principle of the interactive process is the same for most interactive multiob-
jective optimization methods [Miettinen et al., 2008]. An initial solution or set of solutions
is generated. Then, two steps are repeated until a candidate solution is accepted by the

17



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

Figure 4: Illustration of the three types of preference information in interactive multi-
objective optimization. On the left, the preference is expressed as a trade-off value. In
the middle, the preference is given by a reference-point. On the right, the preference is
specified with a classification of the objectives.

user. In the first step, the user evaluates some proposed candidate solutions, or provides
other preference information with regard to the proposed solutions. This information is
used to generate or update the preference model. In the second step, new candidate solu-
tions are generated based on the updated preference model and then proposed to the user.
Note that an a-priori method can easily be considered in an interactive process where
preferences are adjusted by trial-and-error.

The interactive approach has several advantages over a-priori and a-posteriori ap-
proaches. First, in an a-priori approach, it is generally difficult for the user to provide
adequate preference information without knowing the possible solutions. This difficulty
is not present in an interactive approach where the user can refine his preferences based
on the proposed solutions. For a-posteriori approach a different problem arises. It can be
difficult to generate a good approximation of the Pareto-front. The set of solutions may
be too large, and limiting its size using some parameters may hinder finding interesting
solutions. This is not an issue for interactive approaches because Pareto solutions can be
progressively generated. Besides, in interactive approaches the user may guide the search
toward interesting regions of the Pareto-front. This guidance may contribute to avoid the
generation of irrelevant solutions and thus reduces the computational time [Branke, 2008].

In [Miettinen et al., 2008], the authors give an overview of interactive methods for
solving multiobjective optimization problems. They identify three categories of interac-
tive methods according to the type of preference information extracted from the user’s
feedback: trade-off based methods, reference-point approaches, and classification-based
methods. These three types of preference information are illustrated in Figure 4.

In trade-off based methods, the preference information is expressed as relative varia-
tions of objective values between solutions. An example of trade-off information is given
on the left-hand side of the Figure 4. In this example, the desired trade-off rate noted
t1,2 is provided. The trade-off rate corresponds to the gain on f1 which is expected for a
deterioration of f2 by one unit. On the figure, this ratio is verified for the new candidate
solution. Such a trade-off information is used for instance in the Guided Multi-Objective
Evolutionary Algorithm (G-MOEA) proposed in [Branke et al., 2001]. In G-MOEA, the
user provides the desired minimum and maximum values of the trade-off rate. Then, a
set of candidate solutions between the defined bounds are generated using an evolutionary
algorithm. Based on this set of solutions, the user can select a satisfying solution, or adjust
the trade-off rates to obtain new solutions. In this approach, the trade-off information is
referred to as subjective trade-off [Miettinen et al., 2008]. The values are directly set by
the user and do not necessarily correspond to achievable trade-offs. Trade-off information
can also be obtained from measurable properties of the problem, for instance by com-
paring feasible solutions. In this case, the preference information is an objective trade-off

18



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

and the feedback of the user consists in an evaluation of these objective properties of the
problem. A review of trade-off based interactive methods is given in [Eskelinen, 2008] with
a particular focus on objective trade-off based methods.

For reference-point approaches, the user specifies his preferences with desired values,
or range of values, for each objective. Then, one or several candidate solutions on the
Pareto-front are generated as close as possible to the desired reference points. This ap-
proach is illustrated at the center of Figure 4 with one reference-point. In comparison
to trade-off based methods, reference-point approaches are more suitable for the discrete
case, generally indifferent towards the shape of the Pareto frontier, and the preference
information is usually more intuitive [Deb and Sundar, 2006]. The Light Beam Search
approach [Jaszkiewicz and S lowiński, 1999] is a reference-point approach that provides
two ways of exploring the Pareto-front. First, the user defines a reference point and a can-
didate solution is obtained by projection on the Pareto-front. This reference point can be
modified to produce new candidate solutions. Second, in addition to the candidate solu-
tion obtained by projection, a set of neighboring solutions is provided to the user. These
neighbors allow a local exploration of the Pareto-front. In [Jaszkiewicz and S lowiński,
1999], this approach is illustrated on a chemical engineering problem which consists in
selecting parameters for the production of a plastic compound. Four conflicting objectives
are considered for the optimization of the production process. The authors observe that,
thanks to the two methods for changing the preferences, a satisfactory solution can be
obtained in a limited number of iterations.

Finally, in classification-based methods, the user identifies iteratively the objective
function that should be improved and the ones that could be deteriorated with respect
to a given intermediate solution. Therefore, this preference information is expressed by
classifying objective functions according to preference categories. The user may also indi-
cate desired values, or a range of variation, for some objective functions. An illustration
of classification-based methods is given on the right-hand side of Figure 4. The preference
information given by the user is a classification of the objectives that directs the search
for new candidate solutions. Such a classification approach is used, for instance, in the
NIMBUS method [Miettinen and Mäkelä, 2000]. In this interactive method, when a can-
didate solution is presented to the user, he can express his preference by assigning a class
to each objective functions. Five classes are available: a) objective functions whose values
should be improved from the current values, b) objective functions whose values should
be improved until they reach the desired values given by the user, c) objective functions
whose current values are acceptable, d) objective functions whose values can be impaired
until they reach the bounds given by the user, e) objective functions whose values are
allowed to change freely. Then, a new solution is generated according to this preference
information. The process is repeated until a solution with a satisfying trade-off between
objectives is found by the user. The NIMBUS method has been applied to diverse applica-
tion domains such as the process of continuous casting of steel [Miettinen, 2007], dose-plan
for radiotherapy [Ruotsalainen et al., 2010], wastewater treatment [Hakanen et al., 2011],
power plant process [Tveit et al., 2012], and heat exchanger network [Laukkanen et al.,
2012].

Each of these three groups of interactive methods has its benefits and limitations. A
first issue concerns the difficulty for a user to provide preference information, in particular
when numeric values have to be set. On this regard, trade-off based methods appear to
be less intuitive for the user than reference-point and classification-based methods [Deb
and Sundar, 2006, Shin and Ravindran, 1991]. However, the advantage of trade-off based
information is the potential to reuse the same information for solving different problem
instances. For instance, a trade-off rate that has been defined for a first problem instance

19



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

may remain meaningful for a second problem for which the magnitudes of objective values
are significantly different. In this case, reference-point or classification information defined
for the first problem instance cannot be reused for the second one.

In [Greco et al., 2008], the authors propose a method to overcome the difficulty of
providing numerical values. In the proposed method, called Dominance-Based Rough
Set Approach (DRSA), the user has to classify candidate solutions into good solutions
or inadequate solutions categories. Then, the system infers some rules that restrict the
region of the Pareto-front in which new candidate solutions are sampled. For this method,
no numerical values have to be provided by the user. In addition, the rules presented in
form of [if..., then...] decision rules are intelligible and can be easily revised. The DRSA
method facilitates the definition of preference information. However, the reusability of
this preference information is limited because the premises of inferred rules use reference
values. As previously indicated, such values generally cannot be reused for solving different
problem instances.

Finally, beside these difficulties in defining preference information and reusing previous
preferences, a general limit of interactive multiobjective optimization methods relies on the
process of exploring the Pareto-front. During this interactive process, the user may tend
to limit the number of explored trade-offs due to the systematic presence of a loss in some
objective values at each step of the exploration. By definition, moving from one Pareto
optimal solution to another causes a deterioration in at least one objective and a gain
in at least another objective. This exploration of different trade-offs by the user may be
subject to two cognitive biases, namely anchoring effect and loss-aversion [Arnott, 2006,
Smith et al., 2008]. In the context of Pareto-front exploration, the anchoring effect can be
viewed as the tendency of a user to stay focused on the first provided solutions and to pay
less attention to alternative trade-offs that are presented later. The loss-aversion would
be the fact that when a user compares two Pareto solutions he will consider the losses in
objective values more important than equivalent gains. As a result, the user will tend to
avoid losses even when there is an equivalent gain. A consequence of these two cognitive
biases is that users may limit their exploration of the Pareto-front. The NAUTILUS
method proposed in [Miettinen et al., 2010] aims at minimizing the impact of these possible
cognitive biases and in particular the loss-aversion bias. Instead of starting the interactive
process from a Pareto optimal solution, a non-optimal solution is provided. Subsequently,
the user indicates at different steps which objective value to improve until a Pareto optimal
solution is attained. During this interactive process, the user progressively focusses on
a satisfactory trade-off and the intermediate solutions systematically improve at least
one objective value without any loss in other objectives. Other interactive approaches
that provide intermediate non-Pareto optimal solutions may also prevent the loss-aversion
bias. For instance, in interactive evolutionary approaches for multiobjective optimization
problems [Jaszkiewicz and Branke, 2008] the loss-aversion bias may be reduced by the
fact that candidate solutions are progressively improved while the user guides the search
toward an interesting region of the Pareto front.

4.4 Interactive evolutionary algorithms

Interactive evolutionary algorithms form another class of interactive optimization meth-
ods. These approaches concern optimization problems for which objectives are difficult to
quantify, or for which mathematical models are inappropriate. In other words, it addresses
problems that require the user’s subjective evaluation of solutions.

Interactive evolutionary algorithms are evolutionary algorithms in which the evaluation
of solutions is provided entirely, or partially, by the user [Takagi, 2001, Banzhaf, 1997]. An
outline of a simple interactive evolutionary procedure is presented in Algorithm 1. The
search starts by generating an initial population of solutions and then evolutionary search

20



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

operators are applied. Within the evolutionary loop (i.e. recombination, mutation and
selection), the user interacts with the system to provide the evaluation of the solutions
according to his own perception of the quality of the solutions. The evaluation provided
by the user at each generation is used to select the solutions at the origin of the next
generation. This interactive process is repeated until the user identifies a satisfactory
solution.

Algorithm 1: Outline of a simple interactive evolutionary procedure.

1 P ← initializePopulation()
2 NewSolutionsRequested← TRUE
3 while NewSolutionsRequested do
4 P ′ ← recombine(P )
5 P ′ ← mutate(P ′)
6 Evaluation← requestUserEvaluation(P ′)
7 P ← select(P ′, Evaluation)
8 NewSolutionsRequested← requestUserToContinue()

9 end

The interaction between the user and the system allows the introduction of subjec-
tive optimization criteria that could not be formulated explicitly or identified before the
decision-making process. The subjective evaluation of solutions can rely, for instance, on
the aesthetic judgment of the user. For instance, in [Kim and Cho, 2000] an interactive
genetic algorithm is applied for a problem of fashion design. The objective is to find an
appropriate combination of clothes’ colors and shapes. A solution encodes the styles and
colors of the different pieces of clothing. Then, during the evolutionary search process,
the solutions of the current population are displayed in a form of 3D models and the
user evaluates these solutions using rating scales. The solutions that are the most rated
are retained for creating the next generation and the solution with the best score is kept
unaltered for the next generation. This elitism strategy simplifies the user’s evaluation
by providing a reference to the previous generation. It also facilitates the identification
of a final solution without backtracking to previous generations. An extensive review of
applications of interactive evolutionary computation is given in [Takagi, 2001].

The main issue of interactive evolutionary algorithms is the cognitive load of the eval-
uation process for the user. An evolutionary process normally requires a large number of
evaluations in order to converge to interesting regions of the search space. Due to user
fatigue, it is not conceivable to ask the user to evaluate too many solutions. The evalu-
ations may not be reliable, nor the interaction appropriate, if the number of solutions to
evaluate is too large.

Different variants of interactive evolutionary algorithms have been proposed to reduce
the cognitive load of solutions’ evaluation. A first approach consists of using objective
criteria to limit the number of solutions the user has to evaluate in a population. In
[Banzhaf, 1997], the author suggests that, before the evaluation, a representative sub-
set of solutions is selected and evaluation is done by the user only on these selected
solutions. The fitness values are then generalized to the entire population of solutions.
This approach has been implemented, for instance, in [Lee and Cho, 1999] for a problem
of image retrieval. The authors use a clustering method to select some representative
solutions that are evaluated by the user. Then, the evaluation is generalized to the whole
population of solutions. For this, the fitness of a non-evaluated solution is calculated
according to its distance to evaluated solutions.

Another direction for reducing the number of evaluations made by the user consists in

21



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

learning a model of the user fitness, hereinafter referred to as fitness model. This model
generalizes the subjective evaluations made by the user and represents the correlation or
response between some attributes of solutions and the respective user’s evaluations. In
this model-based approach, the evaluations of solutions are used as training instances to
progressively adjust the fitness model. When the model has accumulated enough data, it
can be used to automatically assign a fitness value to generated solutions. User intervention
can then be limited to the adjustment of this fitness model. Different methods have been
investigated to learn such a user fitness, e.g. case-based reasoning [Babbar-Sebens and
Minsker, 2010], artificial neural networks [Biles et al., 1996], as well as support vector
machines [Llorà et al., 2005]. However, interactive evolutionary algorithms remain limited
for solving complex optimization problems. They are only suitable when the user can, and
indeed must, provide a reliable evaluation of the solutions.

4.5 Human-guided search

In interactive evolutionary algorithms and interactive multiobjective optimization, the
contribution of the user aims at enriching the optimization problem during the optimiza-
tion process by, respectively, defining the evaluation of the solutions, and adjusting the
trade-off between objective functions. Contrary to these classes of approaches that focus on
the enrichment of the optimization model, human-guided search procedures propose to im-
prove the efficiency of the optimization procedure. In the human-guided search approach,
the user provides information that guides the optimization process [Klau et al., 2010] and
that has no direct impact on the optimization model. Such a combination between human
and computer solving strategies has been investigated in early works [Krolak et al., 1971].
The initial motivation was to make the best use of the limited computational capabilities
of computers by taking advantage of human’s problem-solving abilities. However, the de-
velopment of computers has changed the targeted issues, and human-guided search now
intends to improve the efficiency and possibly robustness of optimization procedures by
exploiting users’ heuristic information for guiding the search procedures.

Optimization methods considered in human-guided search are local-search procedures
such as hill-climbing [Anderson et al., 2000] and tabu-search [Klau et al., 2002]. The
interactive process alternates between the application of this local-search procedure and
a feedback session in which the user can express some preferences on how to improve the
current solution. The main preference mechanism allows the user to restrain the search
space by selecting the parts of the current solution where the search should focus. More
precisely, an initial solution is proposed to the user so that he can define different degrees
of mobility or assign penalties to solution’ components. This is done in order to specify
which parts are satisfactory, and which ones need to be improved. The next optimization
step will try to improve the solution using a guided local-search procedure. The guidance
consists in focusing the local-search on elements of the solution with high mobility or strong
penalty while keeping low mobility or not penalized elements in place. This procedure can
be viewed as an interactive variant of the guided local search metaheuristic [Voudouris
and Tsang, 2003] for which the user provides the heuristic information to reduce the size
of the neighborhood.

An illustration of the usage of mobilities is given in Figure 5. This example is inspired
by the human-guided search approach applied to the Capacitated Vehicle Routing Problem
with Time-Windows (CVRP-TW) presented in [Anderson et al., 2000] and [Scott et al.,
2002]. In the upper-left side of the figure, a candidate solution is represented. On this
solution, the user can assign different mobilities to customers in order to guide the next
local-search step. A high mobility on a customer indicates that the route has to be
improved, and a low mobility indicates that the route should remain unchanged. In this
simplistic example, high mobilities are assigned to the customers above the depot since

22



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

Figure 5: Example on a VRP of the restriction of a neighborhood by mobilities. The
solution on a gray background in the 1-relocation neighborhood is the best neighbor with
a better cost than the initial solution.

the shape of the route suggests a possible improvement on this part of the solution. These
mobilities are then used to guide the local-search procedure applied to the candidate
solution. On the right-hand side of the figure, the 1-relocation neighborhood of the initial
solution is given. To obtain this neighborhood, a move corresponds to the relocation of one
customer [Gendreau and Tarantilis, 2010] as in the human-guided search method proposed
in [Anderson et al., 2000]. Thanks to the mobilities, the exploration of the neighborhood
is limited to the seven solutions represented in the upper right of the figure, and allows to
obtain a better solution represented in gray. As illustrated, if the user defines appropriate
mobilities, the performance of the local-search procedure can be improved by reducing the
number of neighbors that are evaluated. It should be noted that, in Figure 5, the solution
is improved with only one move. However, for real implementations of the human-guided
search approach, several moves are performed during the local search.

This human-guided search method with mobilities is studied in [Anderson et al., 2000]
and the results of an experiment with users is reported. Four test subjects are asked to
solve eight different instances of the CVRP-TW using a human-guided search approach.
During the interactive optimization process, the user defines the mobilities to guide the
next search iteration. He also perturbs the current solution in order to diversify the search.
The local-search procedure invoked by the users is a hill-climbing search. The results are
compared to an automated procedure that consists in a multi-start hill-climbing method.
The results indicate that on average the costs obtained after 1.5 hours of human-guided
search are attained with 5.0 hours of computation by the automated procedure. In addi-
tion, for the considered problem instances, the results of the human-guided search approach

23



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

are comparable to that of state-of-the-art automated approaches. These results suggest
that the interaction has transformed a basic local-search procedure into a competitive
optimization procedure.

In [Klau et al., 2002], the authors present a human-guided search platform and report
some results on four applications: a graph layout problem, a variation of the traveling
salesman problem, a protein-folding problem, and a jobshop problem. The interaction
process proposed by the platform is similar to the one used for the CVRP-TW application
presented in [4]. The user can assign three degrees of mobility to the elements of a solution:
low, medium and high. In addition, the user can manually modify solutions, backtrack
to previous solutions, change some parameters of the search procedures, and also invoke
a search procedure to improve the current solution. The available procedures are a hill-
climbing procedure and a tabu search method. Both procedures use the mobilities to
reduce the size of the explored neighborhoods. For the tabu search, the low-mobility
elements are considered as tabu elements for the whole improvement step. The high-
mobility elements are initially considered for the moves, and medium-mobility elements
can be impacted by the moves of high-mobility elements. Contrary to the hill-climbing
procedure, the tabu search is able to diversify the search and does not require that the user
perturbs the solution to escape from a local optimum. The results reviewed in [Klau et al.,
2002] tend to indicate that a human-guided search approach can improve the performance
of simple local-search procedures in terms of solution quality when the computational
time is limited. Hence, one particularly interesting aspect of human-guided search is the
possibility for the user to control how much effort the optimization procedure should spend
on particular sub-problems [Scott et al., 2002].

In [Chimani et al., 2005], the authors use the same platform as in [Klau et al., 2002]
for solving a scheduling problem in the domain of air freight. However, the human-guided
search method is combined with an interactive reoptimization approach. In addition to
the mechanism of mobilities, the user can add new constraints to reflect features that are
not modelled in the optimization problem. When the optimization procedure is invoked,
an additional term in the objective function minimizes the modifications of the solution
in order to maintain the consistency of the new constraints.

A similar combination of human-guided search and interactive reoptimization is con-
sidered in [Meignan et al., 2011] for solving a network design problem in the field of
forestry. The objective of the optimization problem is to locate a set of tree-shaped paths
in a graph [Meignan et al., 2012]. For this problem the problem-domain expertise of the
user is required to generate realistic solutions. In addition, user interaction is also re-
quired for generating new candidate solutions in a short time because the optimization
is computationally very expensive. Unlike the previous methods, the proposed guidance
mechanism does not use different degrees of mobility (low, high, and medium). Instead,
the user selects within the current solution the parts on which the search should focus.
Then, during local-search the diversification (i.e. perturbation moves applied on the cur-
rent solution) is focused on the selected parts, and the intensification (i.e. the application
of an hill-climbing procedure in this case) considers the whole solution. In this study, an
experiment has been performed with an expert planner. The solutions obtained with the
interactive approach have been compared to solutions that have been previously obtained
by a manual planning method. Using the interactive approach, the expert obtained on
average a gain of 9% compared to the manually planned routes. In addition, the interac-
tive solution design took between 30 minutes and 1 hour. This time greatly improves the
duration of a manual design that normally lasts several hours.

In these different applications of the human-guided search approach, the human guid-
ance aims at improving the efficiency of the optimization procedure with heuristic infor-

24



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

mation provided by the user. This interaction is based on the assumption that the user
may identify in the problem or solutions some features that are not fully exploited by the
optimization algorithm. This assumption may constitute a limit of the approach because
the user requires some knowledge about the optimization method and has to understand
the impact of his interaction on the optimization procedure. For instance, in the human-
guided search method for solving the CVRP-TW presented in [Anderson et al., 2000],
the perturbation of a candidate solution performed by the user requires some knowledge
about local search procedures. The operation of altering a solution may appear counterin-
tuitive for a user who seeks to improve the solution and is not familiar with the concept of
search diversification. In short, a major issue of human-guided search is that users require
some knowledge about the optimization procedure while in a decision-making process the
user of an optimization tool is generally sought for his expertise in the problem domain
[Barthélemy et al., 2002].

4.6 Additional interactive optimization approaches

In addition to the five classes of interactive approaches detailed in previous sections,
other recent albeit less investigated interactive optimization approaches have been pro-
posed. This section briefly presents some of these interactive approaches that introduce
original ways to interact with an optimization system.

4.6.1 Asynchronous-teams

In the human-guided search approach and trial-and-error approaches for parameter
tuning, the user supports the optimization procedure for obtaining a more efficient opti-
mization. Another way of supporting the optimization procedure is investigated in the
Asynchronous-teams (A-Teams) approach [Talukdar et al., 1998, Rachlin et al., 1999]. A-
Teams is an architecture in which computational agents share a population of solutions
and cooperate in order to optimize this set of solutions. Each agent contributes to the
evolution of a population of solutions by generating, improving, or removing solutions
from the set. In [Rachlin et al., 1999], the authors suggest that, in an A-Teams architec-
ture, humans can participate as agents in the optimization process. A human agent can
generate, edit, and remove solutions. Contrary to human-guided search or trial-and-error,
the role of the user in an A-Teams would be the same as an optimization procedure. This
approach would confer a high degree of autonomy for the user. This autonomy can be
interesting in order to fully exploit user’s search heuristics in the optimization procedure.
However, no concrete implementation of this approach in which the user has the same role
as the artificial agents is reported in the scientific literature.

4.6.2 Crowdsolving (Crowdsourcing for solving complex optimization prob-
lems)

In the same line of A-team which allows users to act as a search procedure, collaborative
solving tools such as FoldIt [Eiben et al., 2012] or Open-Phylo [Kwak et al., 2013] propose
to exploit large groups of users for solving complex optimization problems [Schrope, 2013].
The principle is that users manually solve the proposed problem instances, compete for
obtaining the best solution, and may collaborate by sharing solutions and strategies. In
this approach, the optimization is, in fact, performed by users. For instance, FoldIt is a
collaborative puzzle game for optimizing protein structure. The user edits a 3-dimensional
representation of a protein for optimizing some properties such as its stability or its ca-
pacity to react with specific molecules [Eiben et al., 2012]. The results obtained by the
community of players may contribute to the design of new proteins for curing diseases.

However, different aspects limit the application of the crowdsolving approach for solv-
ing complex optimization problems. First, crowsolving requires a large community of

25



4. SURVEY OF INTERACTIVE OPTIMIZATION APPROACHES

active users. Second, it is necessary to disclose problem data to this community of users
which is not possible in multiple application fields (e.g. optimization problems dealing
with strategic or personal data). In addition, because the optimization is performed by
users, the solving process may not be reliable in terms of quality of the solutions and can
also be inconsistent from one instance to another. Finally, the solving process may take
time, in the order of several days or weeks, before good solutions are obtained by users.
For instance, in [Eiben et al., 2012] the authors analyze the results obtained after one and
two weeks of collaborative solving. These different constraints make collective solving at
the boundary of the scope of interactive optimization defined in Section 2. In particular,
it is difficult to consider such an approach in the context of a decision-making process.

From an optimization perspective, in the A-team and the crowdsolving approaches, it is
questionable to rely on users for performing the optimization per se (i.e. for generating and
improving solutions manually). In fact, it seems reasonable to assume that a computational
method would be able to explore much more solutions that a user with the same operators
for editing solutions. In addition, these operators could be used to develop heuristic search
strategies, such as metaheuristics, that are similar to user strategies. However, there are
two interesting perspectives to manual optimization performed by users. First, the users
can gain insight into the optimization problem by solving it manually. Thus, manual
optimization can be useful for learning purpose. Second, it may be possible to analyze user
strategies for designing or improving optimization procedures. This second perspective is
explored in [Khatib et al., 2011] with an extension of the FoldIt tool were users can
create and improve algorithms. In [Khatib et al., 2011], the authors mentioned that
the algorithms that have been developed collaboratively by FoldIt users have comparable
performances to state of the art optimization algorithms.

4.6.3 Interactive parameter tuning

In some situations, the user of an optimization-based decision support system is able to
evaluate the behavior of a search process. For instance, he can determine if the search space
has been properly explored or if it is necessary to continue the current optimization or not.
In these cases, some parameters of the optimization procedure can be regulated by the user.
More generally, instead of only using automated mechanisms to tune the optimization
procedure, relying on human judgment to adjust some parameters can be an effective
alternative. This interaction is exploited in some trial-and-error approaches for adjusting
the values of parameters. However, a trial-and-error approach is rarely a viable option for
parameter setting due to the complexity of the problem of tuning parameters [Adenso-
Dı́az and Laguna, 2006, Hutter et al., 2010b] and the fact that it requires some knowledge
about the optimization procedure. An intermediate approach between fully automated
procedures and trial-and-error for tuning parameters is proposed in [Hutter et al., 2010a].
The authors propose to combine classical regression techniques and human judgment in
order to identify reasonable parameter settings. In the proposed interactive parameter
tuning approach, the user can guide the process that builds and refines a response model
of parameters. The response model is based on classical regression models which can be
easily represented and interpreted. The interactive process relies on human judgment to
identify important parameters and to adjust ranges for parameter values. Guiding the
parameter tuning process is particularly useful when the computational time budget is
reduced and only a small number of configurations can be evaluated. In addition, it can
help the user to learn about influence and interaction of parameters.

4.6.4 Hyper-interactive evolutionary computation

Hyper-interactive Evolutionary Computation (HIEC) [Bush and Sayama, 2011] intro-
duces an original way of guiding a search process which differs from the human-guided

26



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

search approach presented in Section 4.5. In HIEC, the user controls an evolutionary
process by choosing when, and how, each operator is applied to the current population
of solutions. The user can thus decide how the search space is explored. In addition, the
user is also responsible for the selection process. He selects the solutions of each gener-
ation according to the perception he has of the quality of the solutions. This subjective
evaluation of the solutions is similar to the evaluation process in interactive evolutionary
algorithms. In sum, HIEC combines the principle of guiding an optimization algorithm
with the interactive definition of the objective function. In [Bush and Sayama, 2011], the
authors present different experiments with subjects in which HIEC is used as a teaching
aid and a tool for creative design. The HIEC approach introduces an original interaction
mechanism and an interesting approach for understanding artificial evolutionary processes.
However, as an optimization tool the method appears to combine the shortcomings of both
the human-guided search approach and interactive evolutionary algorithms.

4.6.5 Long-term preference inference

In [Meignan and Knust, 2013], the authors propose an interactive optimization method
that addresses shortcomings of interactive reoptimization. As mentioned in Section 4.2,
in interactive reoptimization, the local modifications applied by the user on a candidate
solution are specific to a problem instance and cannot be reused. Therefore, when multiple
problem instances are solved with the same inaccurate optimization model, the user has to
intervene for each instance in order to adjust the solutions, which can become a laborious
process. A second limit of interactive reoptimization is that the reoptimization can be
suboptimal because it corrects locally a missing feature (constraint or objective) that could
be expressed for the whole solution. The interactive method presented in [Meignan and
Knust, 2013] aims at overcoming these two limitations by generalizing the preferences that
are expressed by the user during an interactive reoptimization process. In the proposed
method, the process of reoptimization remains the same as other interactive reoptimization
methods. First, the user indicates the desired changes on a candidate solution. The
candidate solution is then reoptimized, and the user can express additional changes until
a satisfactory solution is found. However, the feedback accumulated during this iterative
process is dynamically analyzed to identify possible patterns in the parts of the solutions
changed by the user. These patterns are expressed as conjunctive rule sets that generalize
the preferences of the user. When some relevant patterns are identified, the respective
conjunctive rule sets are proposed to the user who has the possibility to add them as
additional objectives. The main advantages of this approach are that inferred objectives
can be reused for solving other problem instances and that inferred objective are expressed
globally on solutions. In addition, the inferred objectives that are expressed as rules
are easily understandable by the user. However, the method may suffer from typical
weaknesses of classification rule learning methods such as the overfitting-avoidance-bias
[Fürnkranz, 1999] which can be problematic if the user feedback is noisy.

5 Classification of interactive optimization methods

In this section, we propose a classification of interactive optimization methods which
consists of two complementary views. The first one focuses on the user and groups in-
teractive methods according to the user’s contribution to the optimization process. This
first part of the classification gives an overall picture of existing interactive optimization
approaches which is completed by a second perspective that addresses the optimization
system and characterizes its different components. We propose three entries for the sec-
ond part of the classification, namely, the type of feedback integration, the lifetime of
preference information, and the type of optimization procedure.

27



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

Figure 6: Classification of interactive optimization methods according to the purpose of
the interaction and the role of the user in the optimization process.

The objective of this classification is, first, to introduce a common terminology for
describing and analyzing interactive optimization methods. Second, the proposed entries
of the classification aim at supporting the development of new interactive optimization
methods by identifying the main design choices that have to be made for the development
of an interactive optimization system. Finally, the characterization of interactive methods
with the proposed classification may help to identify promising or unexplored interaction
mechanisms.

5.1 Purpose of the interaction and role of the user

The first part of the classification concerns the contribution of the user in the opti-
mization process. Two types of contribution were already identified through the review of
interactive methods. First, the user can provide information for completing the optimiza-
tion model. Second, the user can be involved in the optimization process for improving the
efficiency of the optimization procedure. We introduced in Section 2 the terms problem-
oriented interaction and search-oriented interaction for these two types of interaction. In
the proposed classification, we refine this partition between problem-oriented and search-
oriented interaction, and we identify five different roles that characterize the contribution
of the user. For a problem-oriented interaction the user can either adjust or enrich the
optimization problem. In a search-oriented interaction the possible roles of the user within
the optimization process are to assist, guide, or tune the search procedures. A definition
of each of these roles is given below.

Roles of the user in a problem-oriented interaction

A problem-oriented interaction primarily aims at modifying the optimization model in
order to better fit the decision maker’s problem. For this type of interaction, the user’s
preferences complete the definition of the optimization problem. This type of interaction
assumes that the user has a valuable knowledge of the problem domain. For instance, the
interaction in interactive reoptimization is problem-oriented. In interactive reoptimiza-
tion, the user adds new constraints to the problem based on his knowledge of the real

28



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

optimization problem. These new constraints enrich the problem and make the solutions
more suitable to the real context.

In a problem-oriented interaction, the user can play two different roles: Adjuster and
Enricher.

• The user is an adjuster when he adjusts constraints or objectives. In this case, the
type and extent of the modifications made by a user are defined during the design
of the optimization system. When a problem instance is solved, it is assumed that
the problem model is complete and the user knowledge is only required to adjust
some parameters of constraints or objectives. In other words, it is assumed that each
candidate solution is a possible alternative for the decision-maker’s problem, and the
interaction helps to identify the most satisfying solution. The user plays this role
of adjusting the optimization problem, for instance, in interactive multiobjective
optimization where the interaction allows the definition of a satisfactory trade-off
among the attainable ones.

• The second possible role in a problem-oriented interaction is Enricher. The user
plays this role when he modifies the initial definition of the optimization problem by
adding or removing some constraints or objectives. In this case, it is assumed that
the initial problem model may be incomplete, and a candidate solution may not be a
valid alternative. The role of the user is therefore to enrich the optimization problem
in order to obtain useful solutions. Interactive reoptimization belongs to this class of
interactive methods for which the user enriches the optimization problem with new
constraints.

Roles of the user in a search-oriented interaction

A search-oriented interaction aims at improving the efficiency of the optimization pro-
cedure. Contrary to a problem-oriented interaction, a search-oriented interaction does
not modify the optimization model. The feedback provided by the user impacts the op-
timization procedure without changing the constraints and objectives of the optimization
model. For instance, in the human-guided search approach, the mobilities defined by the
user modify the exploration of the search space, but the constraints and objectives that
apply on solutions remain unchanged. In human-guided search, the interaction allows the
user to direct search efforts in order to obtain a good solution more quickly.

Generally, search-oriented interaction requires some knowledge about the optimization
procedure. In human-guided search, for instance, the mobilities set by a user modify the
behavior of a local-search procedure. In this case, the interaction is possible only if the
user understands the process of local-search.

In the proposed classification, the user can play three different roles during a search-
oriented interaction: Assistant, Guide and Tuner.

• The Assistant role is played when the user assists the search process by acting
himself as a search procedure that generates, selects or modifies solutions. In the
asynchronous-teams framework, users play this role and can directly modify the
solutions managed by the team of agents.

• The Guide role is characterized by the fact that the user modifies the behavior
of the search procedures and controls the exploration of the search space. In the
human-guided search approach, for example, the user directs the search without,
himself, acting as a search procedure (i.e. the user does not modify directly the
solutions). However, the user still controls the actions of the optimization procedure
and determines how the optimization procedure explores the search space.

29



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

• The last role for search-oriented interactions is the Tuner role played by the user
when he tunes the optimization procedure. In this case, the user has no direct control
on the operations of the optimization procedure, but the interaction allows the user
to adjust some strategic parameters of the search procedure. The user plays this
role, for instance, in the interactive parameter setting approach.

Summary and discussion

Figure 6 illustrates the first part of the classification which concerns user’s contribu-
tion. At the top level, a distinction is made between problem-oriented and search-oriented
interactions. Then, the second level presents the different roles a user can play during the
interaction. This classification provides an overview of the different modes of interaction,
putting aside the means by which the interactive optimization is achieved. This per-
spective is completed in the next section with a characterization of the main components
involved in the interaction.

In the classification proposed in Figure 6, the purpose of the interaction (at the top
level) may appear to be ambiguous for some interactive approaches. In fact, it is pos-
sible that an interaction results in both a modification of the optimization model and
an improvement of the optimization efficiency. For instance, in interactive multiobjective
optimization the user’s feedback is intended to determine an adequate trade-off between
objectives. This is a problem-oriented interaction. However, the preference information
may also guide the search process toward an adequate solution. Therefore, it may improve
the performance of the optimization procedure [Miettinen et al., 2008, Branke, 2008]. This
additional outcome could be viewed as a search-oriented interaction. Similarly, for human-
guided search, the definition of mobilities that primarily aims at guiding the search process
may also enable the user to introduce new features in candidate solutions [Klau et al.,
2010]. In this case too, the interaction impacts both the optimization procedure and the
definition of the problem. However, most of the ambiguities between problem-oriented and
search-oriented interaction can be solved by examining two aspects of interactive methods.
First, the distinction between problem-oriented and search-oriented interaction is made
on the main purpose of the interaction. In the proposed classification, presented in Fig-
ure 6, we analyzed the initial motivations of interactive methods and disregarded possible
side-effects of the interaction. Second, the type of information in the preference model
should clarify the purpose of the interaction. In a problem-oriented interaction, prefer-
ence information concerns the problem model, such as trade-off information in interactive
multiobjective optimization. For a search-oriented interaction, the preference information
relates to the optimization procedure. For instance, in the human-guided search approach,
the mobilities which form the preference model concern the optimization procedure, and
in particular modify the behavior of the local search.

Concerning the role of the user, it should be noted that some implementations of
interactive methods combine multiple types of interaction for which the user may have
different roles. For instance, in the human-guided search approach, the initial role of the
user is to guide the search process by assigning mobilities (i.e. he has the Guide role in the
classification). However, some implementations of the human-guided search approach also
require, or allow, the user to perturb candidate solutions in order to diversify the search.
For this second interaction, the user explores the search space which is referred to as the
Assistant role, in addition to his initial role of Guide. In the classification of interactive
approaches, given in the lower part of Figure 6, we only considered the main interaction
of each approach for determining the role of the user. However, for some implementations
of these approaches, the user can play multiple roles in the optimization process. This is
illustrated in the detailed taxonomy given in Figures 7 to 9. In this taxonomy, the gray cells
specify the different roles a user can play. For some interactive methods, presented in this

30



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

taxonomy, multiple roles are assigned to the user which indicates that the implementation
of the method provides multiple ways for the user to interact.

In conclusion, this first part of the classification provides basic guidelines for deciding
which interactive approach could be adequate in a given context. The distinction between
problem-oriented and search-oriented interactions clarifies the objective of the interaction.
If the optimization model needs to be improved by the users of an optimization system, a
problem-oriented interaction must be considered. If, on the other hand, the optimization
procedure requires some adjustments when problem instances are solved, then a search-
oriented interaction should be examined. The roles identified in the classification further
clarify how users can support the optimization system. This objective of the classification
to provide a methodological basis for the design and integration of interactive optimization
methods is also pursued in the second part of the classification.

5.2 Characterization of interactive optimization systems

The first part of the classification presented in the previous section focuses on the
user’s contribution to the optimization process. This perspective is completed in this
section by a characterization of the key elements of an interactive optimization system.
To this end, three criteria are used to characterize an interactive optimization system,
namely the type of feedback integration, the preference information lifetime, and the type
of optimization procedure. These additional classification criteria describe the interaction
process from a system perspective. This allows the identification of the differences and
similarities between different implementations of an interactive approach. A description
of the three additional classification criteria is provided below. For each criterion, we also
briefly discuss the interest of the different classes.

A taxonomy of the different interactive optimization methods presented throughout
the review is proposed in Figures 7 to 9. It should be noted that the table does not
present an exhaustive list of existing implementations of interactive methods. Rather,
it provides a representative list of interactive methods. In the table, the references are
grouped by the corresponding interactive approach. The gray columns correspond to the
first part of the classification that focuses on the user. Then, the next three groups of
columns correspond to the criteria concerning the optimization system. Finally, the last
two columns summarize, for each interactive method, the content of the user feedback and
the elements that compose the preference model.

Type of feedback integration (model-free/model-based)

In this second part of the classification, the first element that is characterized is the in-
tegration of the user’s feedback into the preference model. This integration can be done in
two different ways. The user’s feedback can be either directly used to compute preference
information, or the feedback can be generalized through the preference model. We intro-
duced the terms model-free and model-based integration for these two ways of integrating
the feedback of the user. In a model-free approach, the values of the preference model are
directly updated with the feedback of the user. In a model-based approach, a model of the
feedback (or model of the user’s preferences) is learned, and this model is used to derive
the preference information. For instance, in most interactive methods for multiobjective
optimization, the values provided by the user are directly used in the objective function.
There is no generalization of the feedback. This corresponds to a model-free integration.
As can be seen from the taxonomy, the majority of interactive optimization methods uses
a model-free integration of the feedback. However, some interactive methods propose a
model-based integration of the feedback. For instance, the Dominance-based Rough Set
Approach (DRSA) [Greco et al., 2008] is an exception among interactive multiobjective
optimization methods in which the feedback of the user is generalized. In this interactive

31



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

F
igu

re
7
:

C
la

ssifi
cation

of
rep

resen
tative

ex
am

p
les

of
in

teractive
op

tim
ization

m
eth

o
d

s.

32



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

F
ig

u
re

8
:

C
la

ss
ifi

ca
ti

o
n

of
re

p
re

se
n
ta

ti
ve

ex
am

p
le

s
of

in
te

ra
ct

iv
e

op
ti

m
iz

a
ti

on
m

et
h

o
d

s.
(C

on
ti

n
u

ed
)

33



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

F
ig

u
re

9:
C

la
ssifi

cation
of

rep
resen

tative
ex

am
p

les
of

in
teractive

op
tim

ization
m

eth
o
d

s.
(C

on
tin

u
ed

)

34



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

method, a set of decision rules is inferred from the feedback of the user and then used as
preference model. Several interactive evolutionary algorithms also propose a model-based
integration of the feedback using, for instance, case-based reasoning [Babbar-Sebens and
Minsker, 2010], artificial neural networks [Biles et al., 1996] or support vector machines
[Llorà et al., 2005].

A major interest of a model-based approach is the possibility to derive potentially
complex preference information from a simple feedback of the user. An artificial neural
network can, for instance, capture complex relations between different solutions using a
simple feedback such as the selection or rejection of solutions. In contrast, it is gener-
ally more difficult for the user to express his preferences for model-free approaches. For
instance, in interactive multiobjective optimization, most of the model-free approaches
require the user to set preference values that are difficult to determine, such as trade-off
rates [Branke et al., 2001], or values for reference points [Jaszkiewicz and S lowiński, 1999].
In short, the user’s feedback is generally simpler for a model-based approach than for a
model-free approach.

There are, however, several drawbacks to model-based approaches. From a design
perspective, the development of a model-based approach requires additional efforts for
developing the learning procedure. In addition, the learning procedure that generalizes
the user’s feedback may result in additional parameters that have to be adjusted. Finally,
considering the interaction, a model-based approach is likely requiring more information
from the user in order to learn an adequate model. In conclusion, a model-based approach
is potentially easier to use than a model-free one. In turn, a model-based approach requires
more effort in its design and may also necessitate more feedback information from the user.

Preference information lifetime (step-based/short-term/long-term)

The preference information lifetime is a characteristic of the preference model. It is the
period of validity of the information contained in the preference model. We distinguish
three types of preference information according to their lifetime, namely step-based, short-
term (for a single problem instance) and long-term preference information (for multiple
problem instances). A step-based preference information is specific to a part of the opti-
mization process. The information may not be valid for the whole optimization process
and it must be redefined at different stages. For instance, in the human-guided search
approach, the mobilities that guide the search depend on the progress of the optimization
process. The mobilities defined at the early stage of the optimization are likely to be
inappropriate at the end of the optimization. Consequently, this preference information
in human-guided search corresponds to a step-based information. A short-term prefer-
ence information is potentially valid for the whole optimization process, but cannot be
reused for solving another problem instance. For instance, in interactive reoptimization,
the modifications applied to a candidate solution are potentially valid until the end of the
optimization process. However, it generally makes no sense to reuse the same changes on
another problem instance. In this case, the preference model consists of short-term pref-
erence information. Finally, a long-term preference information can possibly be reused for
solving different problem instances. A simple example of such a preference information is
given by the strategic parameters of an optimization procedure that are defined by inter-
action with the user. Generally, after having determined such a parameter, the value can
be reused for solving multiple instances of the optimization problem.

The dynamics of the interaction between the user and the optimization system is
strongly related to the period of validity of the preference information stored in the prefer-
ence model. A short lifetime necessitates frequent updates of the preference information,
and therefore, requires a regular feedback from the user. A longer lifetime potentially
implies less interaction with the user when the right preference information has been de-

35



5. CLASSIFICATION OF INTERACTIVE OPTIMIZATION METHODS

termined. Hence, it is interesting to exploit long-term preference information to reduce
the burden of interaction on the user. This is especially true when different instances of
an optimization problem have to be solved regularly.

In the taxonomy presented in Figures 7 to 9, very few methods use long-term prefer-
ence information. In fact, the preference model of most of the considered methods relies
on values that are specific to problem instances. For instance, in interactive multiobjective
optimization, reference points or aspiration levels correspond to values that are significant
only for the instance at hand. These values generally cannot be reused for another problem
instance. As we mentioned in Section 4.3, for some trade-off based methods the prefer-
ence information may have the potential to be reused but, to the best of our knowledge,
this opportunity has not yet been studied. The development of interactive optimization
methods that exploit long-term preference information represents, for us, an important
perspective for the domain of interactive optimization. This point is further discussed in
the conclusion of the article.

Type of optimization procedure (exact/heuristic/metaheuristic)

The type of optimization procedure is another aspect that characterizes an interactive
optimization system. In the proposed classification, optimization procedures are classified
as exact methods, heuristics or metaheuristics. Although it is possible to refine this
classification of optimization procedures (e.g. [Blum and Roli, 2003] for metaheuristics),
a finer partition would not be necessarily relevant for comparing the existing interactive
methods.

The three types of optimization procedures can briefly be defined as follows. An ex-
act optimization procedure is a procedure that guarantees to find an optimal solution.
Examples of such exact approaches are the simplex method for linear programming and
branch-and-bound algorithms. A heuristic is an approximate optimization procedure,
usually dependent on the optimization problem, which generates a solution by apply-
ing a limited set of rules. Finally, a metaheuristic is a problem-independent heuristic
search strategy that is based on the exploration of the solution space. In order to be ap-
plied on an optimization problem, a metaheuristic has to be specialized, for instance, by
defining neighborhood structures that are specific to the problem. Metaheuristics include
trajectory-based metaheuristics (such as tabu search), population-based metaheuristics
(such as evolutionary algorithms), and model-based metaheuristics (such as estimation of
distribution algorithms).

In the presented taxonomy, most of the implemented optimization procedures are
non-exact algorithms (heuristics or metaheuristics). More precisely, only 7 out of the 32
analyzed methods are implemented with an exact solving procedure. The majority of the
remaining interactive methods uses a metaheuristic. In fact, metaheuristics are particu-
larly suitable for providing good solutions in a short time, which is often necessary in an
interactive context. In addition, a key assumption in interactive optimization is that the
optimization model may be inaccurate, or the performance of the optimization procedure
may be inappropriate. This assumption justifies an interaction with the user. It also
reduces the interest of computing an optimal solution. In this context, computing a sat-
isfactory solution for the user can be more important than obtaining an optimal solution
with respect to the optimization model. Therefore, the benefit of using metaheuristics to
provide good solutions in reasonable time is particularly attractive for interactive opti-
mization.

The classification according to the type of optimization procedure also reveals two
groups of interactive methods. On the one hand, some interactive methods are indepen-
dent of the type of optimization procedure, such as most interactive multiobjective or
reoptimization methods. In this case, during the design of the optimization system the

36



6. CONCLUSION

main aspects that will guide the choice of an optimization procedure are the characteris-
tics of the optimization model and the requirements in terms of quality and computation
time. On the other hand, interactive methods such as interactive evolutionary algorithms
or human-guided search, are specific to a type of optimization procedure. For these meth-
ods, the possible contribution of the user in the optimization process is decisive for the
choice of an optimization procedure. Overall, this second group of interactive methods
shows that the performance is not the only criterion for choosing an optimization proce-
dure. Some optimization procedures can provide special opportunities to integrate user
preferences.

User feedback and preference model

The two last columns of the taxonomy presented in Figures 7 to 9 correspond to the
feedback information provided by the user and the elements which form the preference
model. This information is given to illustrate the classification, and to recall, for each
interactive method, the implementation that has been previously described in the review.

The feedback of the user is the data provided through the graphical interface of the
optimization system. For instance, in an interactive evolutionary algorithm the feedback
generally consists of the rating of solutions, or the selection of preferred solutions. The
preference model, on the other hand, is the representation of the user’s preference in the
system. This preference model possibly generalizes the feedback of the user, in which case
we referred the integration of the feedback to as model-based.

The last column of the taxonomy, describing the preference model of each method,
is a good illustration of the difference between problem-oriented and search-oriented in-
teraction. For problem-oriented interactions, the preference models are related to the
optimization problem. The models correspond to objectives, constraints and parameters
of the optimization model that are determined by the feedback of the user. For search-
oriented interactions, the preference models have an impact on the optimization procedure.
Also, these models generally correspond to parameters of the optimization procedure or
heuristic information obtained through the interaction with the user.

The two last columns of the taxonomy also highlight the difference between model-free
and model-based interactive methods. For model-free interactive methods, which represent
the majority of the considered methods, the preference model simply contains, regroups,
or combines the feedback provided by the user. In contrast, for model-based methods, the
user feedback is the input data for learning the preference model.

6 Conclusion
In this work, we have presented a review of interactive optimization methods. The

considered interactive methods are used during a decision process for solving optimiza-
tion problems. Hence, the interaction occurs between an end-user and an optimization
system and it allows the user to significantly modify the results or the performance of the
optimization system. This review presents different alternatives of integrating a user in
an optimization process and covers interactive methods that until now have been mostly
studied separately in the research literature.

In addition, we proposed a classification of interactive optimization methods with two
complementary points of view. The first part of the classification is user-oriented and
identifies the different roles a user can play in an optimization process. The second part of
the classification describes the interaction from a system perspective and characterizes the
main elements of an interactive optimization system. This classification constitutes a first
step toward a methodological approach for designing interactive optimization systems.

The review and classification revealed some challenges and research issues in the do-
main of interactive optimization. We discuss below some aspects that, in our opinion,

37



REFERENCES

represent promising perspectives for interactive optimization.

The taxonomy of interactive approaches presented in Figures 7 to 9 shows that most of
the reviewed approaches have been designed for short-term preferences. Reusing previous
preference information for solving new problem instances is rarely considered. However,
this aspect seems to be interesting for a wide range of optimization-based decision sup-
port tools. Timetabling, shift scheduling, and rostering are a few examples of optimization
problems that could possibly need to be solved on a weekly or daily basis by the same
decision-maker. For these applications, the ability of the system to learn the user’s pref-
erences over several problem instances could lead to a better efficiency of the interaction
between the system and the user. Learning long-term preferences can allow the user to
avoid having to repeatedly provide similar information on different problem instances.
Instead, he can focus on features specific to each problem instance. However, the inte-
gration of long-term preferences may raise new issues. First, by solving multiple problem
instances, the user gains experience and his understanding of the system evolves. This
learning process of the user could cause inconsistencies in the user’s feedback over time.
In addition, long-term preference information has a larger impact than short-term prefer-
ences that are redefined for each new problem instance. Therefore, it is critical that the
user is able to validate, understand, and adjust long-term preference information [Kulesza
et al., 2009]. Finally, the integration of long-term preferences requires the development of
appropriate computational methods that generalize the user’s feedback.

Another interesting aspect concerns the development of more natural, flexible and
intelligent interaction mechanisms. Mixed-initiative interaction and interface agents seem
to be promising paradigms which can be used to improve interaction in the context of
optimization-based decision support tools. This research direction is already investigated,
for instance, in [Babbar-Sebens and Minsker, 2012] and [Chéné et al., 2014] in the context
of interactive evolutionary algorithms and interactive reoptimization respectively. Mixed
initiative refers to a flexible interaction strategy, where agents can negotiate in order
to determine their role in the accomplishment of tasks, and collaborate to dynamically
adjust their contributions [Allen, 1999]. In the context of interactive optimization, a
mixed-initiative interaction implies that the user can be involved at different levels of the
optimization process. The system should provide interaction mechanisms ranging from
assisting a manual optimization, to an automated optimization process monitored by the
user. In addition, with such a mixed-initiative interaction, the contribution of the user
in the optimization task can change over time. Finally, the system should dynamically
adapt the interaction with the user according to the problem at hand and the experience
gained. More generally, we believe that the development of more natural and intuitive
forms of interaction with optimization system is essential for the integration of advanced
optimization methods in decision support tools. This requires taking into account user
requirements, decision context, and human factors in the early stage of the development
of an optimization system.

References

B. Adenso-Dı́az and M. Laguna. Fine-tuning of algorithms using fractional experimental
designs and local search. Operations Research, 54(1):99–114, 2006.

J. F. Allen. Mixed-initiative interaction. Intelligent Systems and their Applications, IEEE,
14(5):14–23, 1999. doi: 10.1109/5254.796083.

S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza. Power to the people: The role of
humans in interactive machine learning. AI Magazine, 35(4):105–120, 2014.

38



REFERENCES

D. Anderson, E. Anderson, N. Lesh, J. Marks, B. Mirtich, D. Ratajczak, and K. Ryall.
Human-guided simple search. In Seventeenth National Conference on Artificial Intelli-
gence, pages 209–216, 2000.

D. Arnott. Cognitive biases and decision support systems development: a design science
approach. Information Systems Journal, 16(1):55–78, 2006. doi: 10.1111/j.1365-2575.
2006.00208.x.

G. Ausiello, V. Bonifaci, and B. Escoffier. Computability in Context: Computation and
Logic in the Real World, chapter Complexity and Approximation in Reoptimization,
pages 101–129. Imperial College Press, 2007. ISBN: 978-1-84816-245-7.

M. Babbar-Sebens and B. Minsker. A case-based micro interactive genetic algorithm (cb-
miga) for interactive learning and search: Methodology and application to groundwater
monitoring design. Environmental Modelling & Software, 25:1176–1187, 2010. doi:
10.1016/j.envsoft.2010.03.027.

M. Babbar-Sebens and B. Minsker. Interactive genetic algorithm with mixed initiative
interaction for multi-criteria ground water monitoring design. Applied Soft Computing,
12:182–195, 2012. doi: 10.1016/j.asoc.2011.08.054.

R. P. Bagozzi. The legacy of the technology acceptance model and a proposal for a
paradigm shift. Journal of the Association for Information Systems, 8(4):244–254, 2008.

W. Banzhaf. Handbook of Evolutionary Computation, chapter Interactive Evolution, pages
1–6. IOP Publishing Ltd and Oxford University Press, 1997.

J.-P. Barthélemy, R. Bisdorff, and G. Coppin. Human centered processes and decision
support systems. European Journal of Operational Research, 136(2):233–252, 2002. doi:
10.1016/S0377-2217(01)00112-6.

V. Belton, J. Branke, P. Eskelinen, S. Greco, J. Molina, F. Ruiz, and R. S lowiński. Multi-
objective Optimization, chapter Interactive multiobjective optimization from a learning
perspective, pages 405–433. Springer, 2008.

A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in
Applied Mathematics. Princeton University Press, 2009.

R. Benayoun, J. de Montgolfier, J. Tergny, and O. Laritchev. Linear programming with
multiple objective functions: Step method (stem). Mathematical Programming, 1(1):
366–375, 1971. doi: 10.1007/BF01584098.

K. P. Bennett and E. Parrado-Hernández. The interplay of optimization and machine
learning research. Journal of Machine Learning Research, 7:1265–1281, 2006.

H.-G. Beyer and B. Sendhoff. Robust optimization - a comprehensive survey. Computer
Methods in Applied Mechanics and Engineering, 196(33–34):3190–3218, 2007. doi: 10.
1016/j.cma.2007.03.003.

J. A. Biles, P. G. Anderson, and L. W. Loggi. Neural network fitness functions for a
musical iga. In Proceedings of the International Symposium on Intelligent Industrial
Automation, 1996.

M. Birattari. The Problem of Tuning Metaheuristics. PhD thesis, Université Libre de
Bruxelles, 2005.

39



REFERENCES

C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

D. Bouyssou. Readings in Multiple Criteria Decision-Aid, chapter Building criteria: a
prerequisite for MCDA, pages 58–80. Springer Berlin Heidelberg, 1990. doi: 10.1007/
978-3-642-75935-2 4.

J. W. Braklow, W. W. Graham, S. M. Hassler, K. E. Peck, and W. B. Powell. Interactive
optimization improves service and performance for yellow freight system. Interfaces, 22
(1):147–172, 1992. doi: 10.1287/inte.22.1.147.

J. Branke. Multiobjective Optimization, chapter Consideration of Partial User Preferences
in Evolutionary Multiobjective Optimization, pages 157–178. Springer, 2008. doi: 10.
1007/978-3-540-88908-3 6.

J. Branke, T. Kaußler, and H. Schmeck. Guidance in evolutionary multi-objective op-
timization. Advances in Engineering Software, 32(6):499–507, 2001. doi: 10.1016/
S0965-9978(00)00110-1.

J. Branke, K. Deb, K. Miettinen, and R. S lowiński, editors. Multiobjective Optimization,
Interactive and Evolutionary Approaches, volume 5252 of Lecture Notes in Computer
Science. Springer, 2008. ISBN: 978-3-540-88907-6.

E. K. Burke, P. D. Causmaecker, G. V. Berghe, and H. V. Landeghem. The state of
the art of nurse rostering. Journal of Scheduling, 7(6):441–499, 2004. doi: 10.1023/B:
JOSH.0000046076.75950.0b.

E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu. Hyper-
heuristics: a survey of the state of the art. Journal of the Operational Research Society,
64:1695–1724, 2013. doi: 10.1057/jors.2013.71.

B. J. Bush and H. Sayama. Hyperinteractive evolutionary computation. IEEE Trans-
actions on Evolutionary Computation, 15(3):424–433, 2011. doi: 10.1109/TEVC.2010.
2096539.

A. Cesta, G. Cortellessa, A. Oddi, and N. Policella. A csp-based interactive decision aid
for space mission planning. In Advances in Artificial Intelligence, 8th Congress of the
Italian Association for Artificial Intelligence, volume 2829 of Lecture Notes in Computer
Science, pages 511–522, 2003. doi: 10.1007/978-3-540-39853-0 42.

A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, M. Denis, A. Donati, N. Policella,
E. Rabenau, and J. Schulster. Mexar2: AI solves mission planner problems. IEEE
Intelligent Systems, 22(4):12–19, 2007. doi: 10.1109/MIS.2007.75.

F. Chéné, J. Gaudreault, and C.-G. Quimper. A mixed-initiative system for interactive
tactical supply chain optimization. In International Conference of Modeling and Simu-
lation, 2014.

M. Chimani, N. Lesh, M. Mitzenmacher, C. Sidner, and H. Tanaka. A case study in large-
scale interactive optimization. In International Conference on Artificial Intelligence and
Applications, 2005.

F. D. Davis and J. E. Kottemann. User perceptions of decision support effectiveness: Two
production planning experiments. Decision Sciences, 25(1):57–76, 1994. doi: 10.1111/
j.1540-5915.1994.tb00516.x.

40



REFERENCES

F. D. Davis, R. P. Bagozzi, and P. R. Warshaw. User acceptance of computer technology:
A comparison of two theoretical models. Management Science, 35(8):982–1003, 1989.
doi: 10.1287/mnsc.35.8.982.

K. Deb and J. Sundar. Reference point based multi-objective optimization using evo-
lutionary algorithms. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, pages 635–642, 2006. doi: 10.1145/1143997.1144112.

M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR-Spektrum, 22(4):425–460, 2000. doi: 10.1007/
s002910000046.

C. B. Eiben, J. B. Siegel, J. B. Bale, S. Cooper, F. Khatib, B. W. Shen, Foldit Players,
B. L. Stoddard, Z. Popovic, and D. Baker. Increased diels-alderase activity through
backbone remodeling guided by foldit players. Nature Biotechnology, 30:190–192, 2012.
doi: 10.1038/nbt.2109.

P. Eskelinen. Objective trade-off rate information in interactive multiobjective optimiza-
tion methods: a survey of theory and applications. Technical Report 445, Helsinki
School of Economics, 2008. ISBN: 9789524882200.

J. A. Fails and D. R. Olsen, Jr. Interactive machine learning. In Proceedings of the
8th International Conference on Intelligent User Interfaces, pages 39–45, 2003. doi:
10.1145/604045.604056.

M. L. Fisher. Interactive optimization. Annals of Operations Research, 5(3):539–556, 1985.
doi: 10.1007/BF02023610.

G. A. Forgionne. Decision Making Support Systems: Achievements and Challenges for
the New Decade, chapter An Architecture for the Integration of Decision Making
Support Functionalities, pages 1–19. Idea Group Publishing, 2002. doi: 10.4018/
978-1-59140-045-5.ch001.

M. C. Fu. Optimization for simulation: Theory vs. practice. INFORMS Journal on
Computing, 14(3):192–215, 2002. doi: 10.1287/ijoc.14.3.192.113.

J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1):
3–54, 1999. doi: 10.1023/A:1006524209794.

M. Gendreau and C. D. Tarantilis. Solving large-scale vehicle routing problems with time
windows: The state-of-the-art. Technical Report CIRRELT-2010-04, Interuniversity
Research Center on Enterprise Networks, Logistics and Transportation, 2010.

S. Greco, B. Matarazzo, and R. S lowiński. Multiobjective Optimization, chapter
Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization,
pages 121–155. Springer, 2008. doi: 10.1007/978-3-540-88908-3 5.

J. Hakanen, K. Miettinen, and K. Sahlstedt. Wastewater treatment: New insight provided
by interactive multiobjective optimization. Decision Support Systems, 51(2):328–337,
2011. doi: 10.1016/j.dss.2010.11.026.

S. Halim and H. C. Lau. Metaheuristics, Progress in Complex Systems Optimization,
volume 39 of Operations Research/Computer Science Interfaces Series, chapter Tuning
Tabu Search Strategies Via Visual Diagnosis, pages 365–388. Springer US, 2007. doi:
10.1007/978-0-387-71921-4 19.

41



REFERENCES

S. Hamel, J. Gaudreault, C.-G. Quimper, M. Bouchard, and P. Marier. Human-machine
interaction for real-time linear optimization. In IEEE International Conference on Sys-
tems, Man, and Cybernetics, pages 673–680, 2012. doi: 10.1109/ICSMC.2012.6377804.

F. S. Hillier and G. J. Lieberman. Introduction to operations research. McGraw-Hill,
seventh edition, 2001.

F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy. Sequen-
tial model-based parameter optimization: an experimental investigation of automated
and interactive approaches. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and
M. Preuss, editors, Empirical Methods for the Analysis of Optimization Algorithms,
chapter 15, pages 361–411. Springer, 2010a. doi: 10.1007/978-3-642-02538-9 15.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed inte-
ger programming solvers. In Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, volume 6140 of Lecture Notes in
Computer Science, pages 186–202. Springer, 2010b. doi: 10.1007/978-3-642-13520-0 23.

A. Jaszkiewicz and J. Branke. Multiobjective Optimization, chapter Interactive multiob-
jective evolutionary algorithms, pages 179–193. Springer, 2008.

A. Jaszkiewicz and R. S lowiński. The ‘light beam search’ approach - an overview of
methodology applications. European Journal of Operational Research, 113(2):300–314,
1999. doi: 10.1016/S0377-2217(98)00218-5.

C. V. Jones. Visualization and optimization. INFORMS Journal on Computing, 6(3):
221–257, 1994. doi: 10.1287/ijoc.6.3.221.

D. L. Kellogg and S. Walczak. Nurse scheduling: From academia to implementation or
not? Interfaces, 37(4):355–369, 2007. doi: 10.1287/inte.1070.0291.

F. Khatib, S. Cooper, M. D. Tyka, K. Xu, I. Makedon, Z. Popović, D. Baker, and Foldit
Players. Algorithm discovery by protein folding game players. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 108(47):18949–18953, 2011.
doi: 10.1073/pnas.1115898108.

H.-S. Kim and S.-B. Cho. Application of interactive genetic algorithm to fashion design.
Engineering Applications of Artificial Intelligence, 13(6):635–644, 2000. doi: 10.1016/
S0952-1976(00)00045-2.

G. W. Klau, N. Lesh, J. Marks, and M. Mitzenmacher. Human-guided tabu search. In
Eighteenth National Conference on Artificial Intelligence, pages 41–47. The AAAI Press,
2002.

G. W. Klau, N. Lesh, J. Marks, and M. Mitzenmacher. Human-guided search. Journal of
Heuristics, 16(3):289–310, 2010. doi: 10.1007/s10732-009-9107-5.

A. J. Kleywegt and A. Shapiro. Handbook of Industrial Engineering, chapter Stochastic
Optimization, pages 2625–2649. John Wiley & Sons, New York, 3rd edition, 2001. doi:
10.1002/9780470172339.ch102.

P. Krolak, W. Felts, and G. Marble. A man-machine approach toward solving the traveling
salesman problem. Communications of the ACM, 14(5):327–334, 1971. doi: 10.1145/
362588.362593.

42



REFERENCES

T. Kulesza, W.-K. Wong, S. Stumpf, S. Perona, R. White, M. M. Burnett, I. Oberst, and
A. J. Ko. Fixing the program my computer learned: Barriers for end users, challenges
for the machine. In Proceedings of the 14th International Conference on Intelligent User
Interfaces, pages 187–196, 2009. doi: 10.1145/1502650.1502678.

D. Kwak, A. Kam, D. Becerra, Q. Zhou, A. Hops, E. Zarour, A. Kam, L. Sarmenta,
M. Blanchette, and J. Waldispühl. Open-phylo: a customizable crowd-computing
platform for multiple sequence alignment. Genome Biology, 14(10), 2013. doi:
10.1186/gb-2013-14-10-r116.

G. Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–416, 2009.
doi: 10.1287/trsc.1090.0301.

T. Laukkanen, T.-M. Tveit, V. Ojalehto, K. Miettinen, and C.-J. Fogelholm. Bilevel heat
exchanger network synthesis with an interactive multi-objective optimization method.
Applied Thermal Engineering, 48:301–316, 2012. doi: 10.1016/j.applthermaleng.2012.
04.058.

J. D. Lee and K. A. See. Trust in automation: Designing for appropriate reliance. Human
Factors, 46(1):50–80, 2004. doi: 10.1518/hfes.46.1.50 30392.

J.-Y. Lee and S.-B. Cho. Sparse fitness evaluation for reducing user burden in interac-
tive genetic algorithm. In IEEE International Fuzzy Systems Conference Proceedings,
volume 2, pages 998–1003, 1999. doi: 10.1109/FUZZY.1999.793088.

P. Legris, J. Ingham, and P. Collerette. Why do people use information technology? a
critical review of the technology acceptance model. Information & Management, 40(3):
191–204, 2003. doi: 10.1016/S0378-7206(01)00143-4.

C. Liebchen, M. Lübbecke, R. Möhring, and S. Stiller. Robust and Online Large-Scale
Optimization, volume 5868 of Lecture Notes in Computer Science, chapter The Concept
of Recoverable Robustness, Linear Programming Recovery, and Railway Applications,
pages 1–27. Springer-Verlag Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-05465-5 1.

X. Llorà, K. Sastry, D. E. Goldberg, A. Gupta, and L. Lakshmi. Combating user fatigue in
iGAs: partial ordering, support vector machines, and synthetic fitness. In Proceedings of
the 7th Annual Conference on Genetic and Evolutionary Computation, pages 1363–1370,
2005. doi: 10.1145/1068009.1068228.

B. L. Maccarthy and J. Liu. Addressing the gap in scheduling research: a review of
optimization and heuristic methods in production scheduling. International Journal of
Production Research, 31(1):59–79, 1993. doi: 10.1080/00207549308956713.

B. McCollum. A perspective on bridging the gap between theory and practice in uni-
versity timetabling. In E. K. Burke and H. Rudová, editors, Practice and Theory of
Automated Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages
3–23. Springer-Verlag Berlin Heidelberg, 2006. doi: 10.1007/978-3-540-77345-0 1.

D. Meignan. A heuristic approach to schedule reoptimization in the context of interac-
tive optimization. In Proceedings of the 2014 Conference on Genetic and Evolutionary
Computation, pages 461–468. ACM, 2014. doi: 10.1145/2576768.2598213.

D. Meignan. An experimental investigation of reoptimization for shift scheduling. In
Proceedings of the 11th Metaheuristics International Conference, 2015.

43



REFERENCES

D. Meignan and S. Knust. Interactive optimization with long-term preferences inference
on a shift scheduling problem. In A. Fink and J. Geiger, editors, Proceedings of the 14th
European Metaheuristics Workshop, pages 1–6, 2013.

D. Meignan, J.-M. Frayret, and G. Pesant. An interactive heuristic approach for the
P-forest problem. In 2011 IEEE International Conference on Systems Man and Cyber-
netics, pages 1009–1013, 2011. doi: 10.1109/ICSMC.2011.6083801.

D. Meignan, J.-M. Frayret, G. Pesant, and M. Blouin. A heuristic approach to automated
forest road location. Canadian Journal of Forest Research, 42(12):2130–2141, 2012. doi:
10.1139/x2012-140.

K. Miettinen. Using interactive multiobjective optimization in continuous casting of
steel. Materials and Manufacturing Processes, 22(5):585–593, 2007. doi: 10.1080/
10426910701322468.

K. Miettinen. Survey of methods to visualize alternatives in multiple criteria decision
making problems. OR Spectrum, 36(1):3–37, 2014. doi: 10.1007/s00291-012-0297-0.

K. Miettinen and M. M. Mäkelä. Interactive multiobjective optimization system WWW-
NIMBUS on the internet. Computers & Operations Research, 27(7–8):709–723, 2000.
doi: 10.1016/S0305-0548(99)00115-X.

K. Miettinen, F. Ruiz, and A. P. Wierzbicki. Multiobjective Optimization, chapter Intro-
duction to Multiobjective Optimization: Interactive Approaches, pages 27–58. Springer,
2008. doi: 10.1007/978-3-540-88908-3 2.

K. Miettinen, P. Eskelinen, F. Ruiz, and M. Luque. NAUTILUS method: An interactive
technique in multiobjective optimization based on the nadir point. European Journal
of Operational Research, 206(2):426–434, 2010. doi: 10.1016/j.ejor.2010.02.041.

B. M. Muir. Trust between humans and machines, and the design of decision aids. In-
ternational Journal of Man-Machine Studies, 27(5–6):527–539, 1987. doi: 10.1016/
S0020-7373(87)80013-5.

T. T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization: A survey
of the state of the art. Swarm and Evolutionary Computation, 6:1–24, 2012. doi:
10.1016/j.swevo.2012.05.001.

G. Phillips-Wren. Assisting human decision making with intelligent technologies. In
Knowledge-Based Intelligent Information and Engineering Systems, volume 5177 of Lec-
ture Notes in Computer Science, pages 1–10, 2008. doi: 10.1007/978-3-540-85563-7 1.

M. L. Pinedo. Scheduling Theory, Algorithms, and Systems, chapter Design and Imple-
mentation of Scheduling Systems: Basic Concepts, pages 459–483. Springer, fourth
edition, 2012.

J. Rachlin, R. Goodwin, S. Murthy, R. Akkiraju, F. Wu, S. Kumaran, and R. Das. A-
teams: An agent architecture for optimization and decision-support. In Intelligent
Agents V: Agents Theories, Architectures, and Languages, volume 1555 of Lecture Notes
in Computer Science, pages 261–276, 1999. doi: 10.1007/3-540-49057-4 17.

F. Rothlauf. Design of Modern Heuristics, chapter Optimization Problems, pages 7–44.
Natural Computing Series. Springer, 2011. doi: 10.1007/978-3-540-72962-4 2.

44



REFERENCES

B. Roy. Main sources of inaccurate determination, uncertainty and imprecision in decision
models. Mathematical and Computer Modelling, 12(10–11):1245–1254, 1989. doi: 10.
1016/0895-7177(89)90366-X.

B. Roy. Paradigms and challenges. In Multiple Criteria Decision Analysis: State of the
Art Surveys, volume 78 of International Series in Operations Research & Management
Science, pages 3–24. Springer New York, 2005. doi: 10.1007/0-387-23081-5 1.

H. Ruotsalainen, K. Miettinen, and J.-E. Palmgren. Interactive multiobjective opti-
mization for 3D HDR brachytherapy applying IND-NIMBUS. In New Developments
in Multiple Objective and Goal Programming, volume 638 of Lecture Notes in Eco-
nomics and Mathematical Systems, pages 117–131. Springer Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-10354-4 8.

M. W. P. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation
Science, 29(1):17–29, 1995. doi: 10.1287/trsc.29.1.17.

M. Schrope. Solving tough problems with games. Proceedings of the National Academy of
Sciences of the United States of America, 110(18):7104–7106, 2013. doi: 10.1073/pnas.
1306643110.

S. D. Scott, N. Lesh, and G. W. Klau. Investigating human-computer optimization. In
Proceedings of the Conference on Human Factors in Computing Systems, pages 155–162,
2002. doi: 10.1145/503376.503405.

J. Shim, M. Warkentin, J. F. Courtney, D. J. Power, R. Sharda, and C. Carlsson. Past,
present, and future of decision support technology. Decision Support Systems, 33(2):
111–126, 2002. doi: 10.1016/S0167-9236(01)00139-7.

W. S. Shin and A. Ravindran. Interactive multiple objective optimization: Survey I -
continuous case. Computers & Operations Research, 18(1):97–114, 1991. doi: 10.1016/
0305-0548(91)90046-T.

E. D. Smith, M. Piatelli-Palmarini, and T. Bahill. Decision Modeling and Behavior in
Complex and Uncertain Environments, volume 21 of Springer Optimization and Its
Applications, chapter Cognitive Biases Affect the Acceptance of Tradeoff Studies, pages
227–249. Springer New York, 2008. doi: 10.1007/978-0-387-77131-1 10.

S. Sra, S. Nowozin, and S. J. Wright. Optimization for machine learning, chapter Intro-
duction: Optimization and Machine Learning, pages 1–17. MIT Press, 2012.

H. Takagi. Interactive evolutionary computation: fusion of the capabilities of EC opti-
mization and human evaluation. Proceedings of the IEEE, 89(9):1275–1296, 2001. doi:
10.1109/5.949485.

S. Talukdar, L. Baerentzen, A. Gove, and P. De Souza. Asynchronous teams: Cooperation
schemes for autonomous agents. Journal of Heuristics, 4(4):295–321, 1998. doi: 10.1023/
A:1009669824615.

T.-M. Tveit, T. Laukkanen, V. Ojalehto, K. Miettinen, C.-J. F. T.-M. Tveit, T. Laukka-
nen, V. Ojalehto, K. Miettinen, and C.-J. Fogelholm. Interactive multi-objective opti-
misation of configurations for an oxyfuel power plant process for co2 capture. Chemical
Engineering Transactions, 29:433–438, 2012. doi: 10.3303/CET1229073.

A. van Vliet, C. G. E. Boender, and A. H. G. Rinnooy Kan. Interactive optimization of
bulk sugar deliveries. Interfaces, 22(3):4–14, 1992. doi: 10.1287/inte.22.3.4.

45



REFERENCES

C. Vercellis. Business Intelligence: Data Mining and Optimization for Decision Making.
Wiley, 2009.

C. Voudouris and E. P. K. Tsang. Handbook of Metaheuristics, chapter Guided local
search, pages 185–218. Kluwer Academic, 2003.

J. Wallenius. Comparative evaluation of some interactive approaches to multicriterion
optimization. Management Science, 21(12):1387–1396, 1975. doi: 10.1287/mnsc.21.12.
1387.

J. Wessels and A. P. Wierzbicki. Model-Based Decision Support Methodology with Envi-
ronmental Applications, volume 9 of Mathematical Modelling: Theory and Applications,
chapter Model-Based Decision Support, pages 9–28. Springer, 2000.

A. Zych. Reoptimization of NP-hard problems. PhD thesis, Eidgenössische Technische
Hochschule, ETH Zürich, 2012. Nr. 20257.

46


	Introduction
	Context and definitions
	Optimization model definition
	Key components of an interactive optimization system
	Interactive optimization within the decision process

	Limits of optimization methods as decision support tools
	Inherent limits of optimization models
	Performance inadequacy
	Non-acceptance and misunderstanding of optimization systems

	Survey of interactive optimization approaches
	Trial and error
	Interactive reoptimization
	Interactive multiobjective optimization
	Interactive evolutionary algorithms
	Human-guided search
	Additional interactive optimization approaches
	Asynchronous-teams
	Crowdsolving (Crowdsourcing for solving complex optimization problems)
	Interactive parameter tuning
	Hyper-interactive evolutionary computation
	Long-term preference inference


	Classification of interactive optimization methods
	Purpose of the interaction and role of the user
	Characterization of interactive optimization systems

	Conclusion

