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Abstract
In this article we describe a method for enriching
interactively an optimization model with long-term
preferences and illustrate it by a use case. Interac-
tive enrichment is the process of adjusting an op-
timization model using the feedback of a user on
intermediate results. The integration of user’s pref-
erences allows capturing aspects of the optimization
problem that have not been modelled initially. In
existing interactive optimization approaches, pref-
erences are typically short-term, i.e. specific to the
problem instance. The proposed approach investi-
gates long-term preferences that can be reused for
solving multiple problem instances. The interactive
optimization method has been developed for solv-
ing a shift scheduling problem. An Iterated Local
Search (ILS) metaheuristic provides solutions that
have to be evaluated by the user. Based on this
feedback of the user, long-term preferences are in-
ferred as conjunctive rule sets. The user can then
add some of the proposed conjunctive rule sets to
enrich sustainably and transparently the optimiza-
tion model with new soft constraints. For testing
the proposed interactive enrichment method a de-
cision support system prototype has been imple-
mented. Preliminary results allowed identifying in-
teresting perspectives and applications for the ap-
proach.

Keywords: Interactive optimization, shift
scheduling, decision support, rule inference.

1 Introduction

In an interactive optimization system, the user or
decision maker interacts during the solving process
and by his feedback on intermediate results he can
significantly modify final solutions or performance
of the optimization process. At present, different in-
teractive optimization methods have been proposed
to address several issues related to the integration
of optimization methods in decision support tools.

First, the user may guide the search process in
order to obtain better performance. For instance,
the user may know some characteristics of the prob-
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lem instance that are not fully exploited by the op-
timization algorithm. In addition, when the opti-
mization method is unable to produce an optimal
solution in a reasonable amount of time, the user
may also contribute to determine a compromise be-
tween computational time and quality of the so-
lution. This interactive guiding process has been
investigated in Human-Guided Search (HuGS) ap-
proaches [10, 13] and is also related to interactive
parameter optimization approaches [9].

Second, interaction may be used to enrich or ad-
just the optimization model. In many situations
where an optimization method is integrated into a
decision support tool, the solutions of the optimiza-
tion method have to be adjusted in order to cap-
ture additional aspects of the real problem. In an
interactive context, the problem-domain expertise
of the user may be exploited by the optimization
method for generating more realistic or relevant so-
lutions. Interactive enrichment or adjustment of the
optimization model is considered in interactive ap-
proaches for multiobjective optimization [14] and,
to some extent, in interactive evolutionary algo-
rithms [16].

Finally, interaction between the user and the op-
timization method may facilitate the acceptance of
the system by the user as well as favour the un-
derstanding of the optimization problem. This may
results in a more efficient use of the decision sup-
port tool. An overview of individual learning in the
context of interactive multiobjective optimization is
given in [1], and we refer the reader to [15, 4] for
the main concepts about user acceptance and user
trust in the context of decision aids.

We identify two limitations of existing interac-
tive optimization approaches for enriching or ad-
justing an optimization model. First, preferences
are typically short-term, i.e. the adjustments made
on the optimization model are specific to a prob-
lem instance. Second, the possibilities to enrich
an optimization model with new features that are
not initially modelled are limited. For example,
in interactive approaches for multiobjective opti-
mization problems the feedback of the user al-
lows determining preferences related to the ob-
jectives considered. These preferences are either
trade-off values between objectives (trade-off based
methods), or expected objective values (reference
point approaches), or priority ranks of objectives
(classification-based methods) [14]. The user evalu-



ates several intermediate solutions for progressively
adjusting the preferences related to the objectives.
This interactive process that has been proven suc-
cessful for solving multiobjective optimization prob-
lems is, however, limited to the adjustment of pref-
erences related to the objectives. The type of pref-
erence is specified in advance. The interactive en-
richment with new constraints or objectives is not
considered. In addition, the preferences learned for
solving a given problem instance may not be valid or
reusable for another problem instance. It is, there-
fore, necessary to repeat the interactive adjustment
process for solving additional optimization problem
instances, and the accumulated amount of informa-
tion about preferences is lost.

The method proposed in this study addresses
these two limitations by introducing an interac-
tive enrichment procedure with long-term prefer-
ences. These long-term preferences are new soft
constraints inferred from user feedback that can be
added to the optimization model and reused for
solving multiple problem instances. In addition,
only few assumptions are made on the preferences,
which allow enriching the model with a wide variety
of possible new constraints.

The proposed interactive enrichment method has
been developed for a shift scheduling problem [5].
This problem basically corresponds to the optimiza-
tion of staff schedule according to a demand while
satisfying contract requirements and staff prefer-
ences.

For solving a problem instance, the interactive
process alternates between an optimization step
for computing a solution, and an evaluation phase
where the user gives a feedback on the solution for
guiding the next optimization step. Candidate so-
lutions are generated by an Iterated Local Search
(ILS) metaheuristic. Each solution is a complete
schedule of the employees. On proposed schedules,
the user can identify the assignments of employees
to shifts that are satisfactory and the ones that are
inadequate. These preferences on assignments are
used in the next optimization steps to guide the
search toward a more satisfactory solution that in-
tegrates practical aspects of the problem that are
not initially modelled. These assignment evalua-
tions are short-term preferences considering that
they cannot be re-used as it is for other schedule pe-
riods. With this short-term preference mechanism
the user has to adjust the proposed schedules for
each new problem instance, even if the preference
can be generalized. The goal of the proposed long-
term preference enrichment method is to address
this limitation by extracting preferences that can
be re-used. In addition to assignment evaluations
that guide the search, the accumulated feedback of
the user is dynamically analysed to identify poten-
tial long-term preferences. These preferences are in-
ferred as conjunctive rule sets. The more accurate
rule sets are presented to the user. He can then add
some of the rule sets as new soft constraints.

In the next sections we present this approach
through a use case. The studied optimization prob-
lem is introduced in Section 2.1. Then, the ILS and
the short-term preference mechanism are described
in Sections 2.2 and 2.3 respectively. Finally, the in-
ference and integration of long-term preferences are
presented in Sections 2.4 and 2.5.

A decision support prototype has been imple-
mented and tested on real datasets [11]. Prelimi-
nary results and perspectives are discussed at the
end of the article.

2 Use case

The remainder of the paper will focus on the fol-
lowing use case. A manager uses a planning system
that includes the proposed interactive enrichment
method for determining the week schedule of his
employees. After having specified the input data
such as the availability of employees and the re-
quired number of employees per shift, the system
proposes an initial schedule. However, this solution
is not entirely satisfactory. There are some excep-
tions, specific to the planning period, that must be
manually defined (e.g. an employee that should be
scheduled at the same time as another employee).
In addition, as a more general rule the manager
tries to not schedule employees with part-time con-
tract on Saturdays. The manager expresses these
preferences by identifying assignments that are in-
adequate. Additionally he can defined which as-
signments are preferred instead. The optimization
procedure is run once again to try to satisfy the user
preferences and schedule requirements. New assign-
ment preferences can be iteratively defined by this
process.

After having accumulated enough feedback from
the user the system is able to extract some pat-
terns to identify inadequate assignments. In the
considered use-case, the system identifies that an
employee with part-time contract assigned on Sat-
urday is not satisfactory. This rule is proposed to
the user which has the possibility to add it as a new
soft constraint in the optimization model. If the
rule is validated by the manager, the subsequent
solutions provided by the system will automatically
integrate this new constraint. Contrary to assign-
ment preferences, the added constraint can be used
for solving multiple problem instances.

2.1 Shift scheduling problem

The optimization problem considered in this study
and depicted in the use-case is a shift schedul-
ing problem adapted from [11]. The optimization
model in [11] deals with shift scheduling of tank
trucks. It has been reformulated into a more gen-
eral shift scheduling problem. The objective is to
optimize the assignments of employees to shifts for
a given planning period. A shift is a time inter-



val in a day (e.g. early 7:00-15:00, late 15:00-22:00)
over which employees has to be scheduled [2]. A
number of employees required by day for each shift
is defined. A solution to the problem is a set of
daily assignments of employees to shifts such as the
required number of employees by shift and by day
is satisfied. In addition to this constraint related
to the staff demand, a solution must satisfy a set of
hard constraints and optimize some soft constraints.

Hard constraints considered in the optimization
model are the following:
Coverage: Each employee is assigned to at most
one shift per day. The number of employees as-
signed to a shift on a day must match the demand.
An employee can be assigned to a shift only if he is
available.
Skill: An employee is assigned to a shift slot only
if he has the required skills.
Maximum week working time: The working
time per week of an employee must not exceed the
maximum week working time defined by the con-
tract.
Consecutive shift type exclusion: Some shift
types cannot be combined on two consecutive days
(e.g. assigning an early shift the day after a night
shift is not permitted).

Initial soft constraints are the following:
Isolated day: Isolated working days and days off
should be avoided.
Desired working time: The total working time
should match as much as possible the desired work-
ing time.
Multiple shift types: The number of different
shift types assigned to an employee in a week should
be minimized.
Preferred shift type: Preferred and undesired
shift types for specific assignments should be max-
imized and minimized respectively.

2.2 Iterated local search

As described in the use-case, the optimization pro-
cedure provides the initial solution and also re-
optimizes the current solution when requested by
the user. The solutions are computed by an ILS
metaheuristic [12]. ILS iteratively performs two
steps until a stopping criterion is met. After having
generated and improved the initial solution, the first
step perturbs the current solution. The second step
improves the perturbed solution by local-search. Fi-
nally, a criterion determines if the resulting solution
is accepted for the next iteration.

In our implementation of ILS, the initial solution
is generated by a greedy algorithm. The local search
procedure is a local descent using block-swap neigh-
bourhood [3]. Perturbation is produced by random
block rotations.

A parallel implementation of the ILS allows ob-
taining satisfactory solutions in a few seconds for
the considered datasets. The stopping criterion cor-
responds to a maximum number of iterations and a

time limit. However, the user can dynamically visu-
alize the current best found solution with the detail
of the cost. He can stop the optimization process
at any time.

2.3 Feedback and short-term prefer-
ences

When a solution computed by the ILS procedure
is proposed to the user, he can give a feedback on
it. The feedback exploited by the proposed interac-
tive approach is an evaluation of employees’ assign-
ments. The user can identify the assignments that
are satisfactory and the ones that are inadequate.

Figure 1 represents a hypothetical schedule pre-
sented to the manager in the use-case. The shift
assignments have been optimized according to the
initial data and constraints. Some of the assign-
ments have been marked by the manager as inade-
quate and others as satisfactory. These evaluations
are respectively represented by crosses and ticks.

Figure 1: A hypothetical schedule evaluated by a user.
Crosses represent assignments considered as inadequate
by the user, and ticks are satisfactory assignments. Em-
ply slots in white are non-working days.

This feedback is used in two different ways by the
interactive optimization method. The first mech-
anism directly uses these assignment preferences
in the optimization procedure. Inadequate assign-
ments generate a penalty if they appear in the so-
lution and assignments marked as satisfactory gen-
erate a penalty if they are not present in the so-
lution. The penalties correspond to two additional
constraints introduced in the optimization model
with a lexicographic priority ordering [6]. Hard con-
straints are considered first, then the inadequate
assignments constraint, followed by the satisfactory
assignments constraint, and finally soft constraints.

Considering the schedule and assignment prefer-
ences in Figure 1, the user can re-optimize the so-
lution with the ILS procedure. For this new run,
the optimization procedure will search for a solu-
tion that avoids inadequate assignments, preserves
satisfactory assignments while satisfying hard con-
straints and minimizing soft constraints.

This first mechanism, allows integrating aspects
of the problem that are not initially modelled. How-
ever, assignment evaluations are short-term prefer-



ences since they cannot be re-used for optimizing
another schedule period. The second mechanism
tries to generalize the feedback in order to enrich
the optimization model with long-term preferences.

2.4 Long-term preference inference

In the proposed approach, long-term preferences are
a generalization of the user’s feedback. Note that
the feedback can be accumulated on different plan-
ning periods. In Figure 1 a potential generalization
of the feedback is that employees with part-time
contract should not work on Saturday. The objec-
tive of the long-term preference inference procedure
is to extract such a pattern in order to enrich the
optimization model with new soft constraints. Due
to the possible impact of adding a soft constraint,
the long-term preference inferred must be under-
stood by the user and validated before being added
to the model.

In order to identify such a pattern in the feed-
back, the assignment preferences are characterized
by a set of attribute values. Eighteen attributes
have been used to characterize the assignment pref-
erences. Figure 2 reports the values of some at-
tributes for the preferences given in Figure 1. Each
assignment preference corresponds to a new set
of attribute values. For instance, the inadequate
assignment of Employee 1 to the Early shift on
Saturday is characterized by the first line of at-
tribute values in Figure 2. The value of the last
attribute named satisfactory indicates whether
the assignment has been evaluated as inadequate
or satisfactory by the user.

Figure 2: Characterization of the user’s feedback of
Figure 1. Each assignment preference corresponds to a
set of attribute values.

Based on this characterization of the feedback,
long-term preferences are extracted as conjunctive
rule sets that classify the assignment preferences
according to the satisfactory attribute value.
Rule sets consist of rules that are “OR-ed” to-
gether. Premises of individual rules are tests on
attributes that are “AND-ed” together. Only clas-
sifiers for inadequate assignments are considered.

The preference “employees with part-time contract
should not work on Saturday” can be expressed
by the conjunctive rule: IF employee-contract =

"Part-time" AND day = "Saturday" AND work

= "Yes" THEN satisfactory = "No". The objec-
tive of the inference mechanism is to find such a
rule set in the user’s feedback.

Conjunctive rule sets have been adopted to rep-
resent long-term preference, first, because it is an
efficient way to represent a lot of constraints for
shift scheduling problems. In addition, conjunctive
rule set is one of the most understandable classi-
fier. Finally, various machine learning algorithms
can infer conjunctive rule sets from the proposed
characterization of the feedback [17].

Conjunctive rule sets are extracted by a separate-
and-conquer algorithm without global optimization
[8]. The method is quite similar to PART [7]. Each
rule in a set is built from a depth-first search path
in a decision tree as illustrated in Figure 3. Tests
in the decision tree are selected using the informa-
tion gain heuristic [17, chap. 4 § 3]. When a rule
is built from a decision tree, covered instances are
removed, and additional rules are created for the re-
maining instances. A minimum coverage criterion
stops the process. Several rule sets are generated
using different first tests.

Figure 3: Decision-tree exploration for the feed-
back of Figure 2. The path to the leaf corresponds
to the conjunctive rule IF employee-contract =

"Part-time" AND day = "Saturday" AND work =

"Yes" THEN satisfactory = "No".

Conjunctive rule sets with the lowest error rates
and shortest lengths are presented to the user.
They correspond to potential long-term preferences.
Computational time to infer these rule sets does
not exceed few seconds for hundreds of assignment
evaluations (i.e. set of attribute values depicted in
Figure 2). Thus, potential long-term preferences
can be updated dynamically when the user gives a
feedback on a solution.



2.5 Long-term preference integra-
tion

When a long-term preference is presented to the
user, he can add it to the optimization model
as a new soft constraint. In the use-case, the
inferred preference corresponds to the conjunctive
rule set: IF employee-contract = "Part-time"

AND day = "Saturday" AND work = "Yes" THEN

satisfactory = "No". If the user validates this
conjunctive rule set, a new constraint is added
to the optimization model. Then, for the next
optimization steps the ILS procedure will try to
satisfy this constraint in addition to initial hard
and soft constraints.

Evaluation of a conjunctive rule set for a solution
is based on the classification of assignments. The
rule set is evaluated on each assignment of the so-
lution. If the assignment is classified as inadequate
(i.e. satisfactory = "No"), the constraint is con-
sidered as violated for the assignment.

Conjunctive rule set constraints can be added dy-
namically to the optimization model. Integration
of these long-term preferences does not require sig-
nificant changes for the ILS procedure. However,
the local-search procedure has been optimized with
delta-evaluation1 of solutions for the exploration of
the neighbourhood. During the local search, the
costs of solutions in a neighbourhood is computed
from the costs of the solution at the origin and the
difference of costs resulting from the moves. The
difference of costs between two neighbouring solu-
tions may be computed faster than a full evalua-
tion of a solution. For conjunctive rule set con-
straints, the evaluation of the number of assign-
ments violated by a constraint is optimized by this
method. Note that this optimization depends on
the attributes in the rule set.

3 Conclusion

A decision support system prototype has been im-
plemented to test the proposed method and conduct
preliminary experiments. The datasets presented in
[11] have been adapted for this purpose. The goal
of preliminary experiments was twofold. First, com-
putational performances of the ILS procedure were
evaluated. In addition, a second part of the exper-
iments aimed at confirming that long-term prefer-
ences can be extracted from a user feedback with
the proposed method.

The 15 problem instances adapted from [11] have
been solved using IBM R© ILOG CPlex 12, with a
time limit of 1 hour per instance. The best found
solutions (optimal solution for 9 of 15 instances)
have been compared to the results of the ILS pro-
cedure with a time limit of 60 seconds on a standard
PC (Intel R© CoreTM i5 2.5GHz, 2GB memory). The
ILS procedure is able to solve all hard constraints.

1sometimes referred to as incremental evaluation

The average gap between ILS and best found so-
lutions is 9.2%. This gap represents an average of
1.1% of additional assignments for which soft con-
straints are not satisfied. This first result suggests
that the implemented ILS procedure could be ade-
quate for an interactive optimization approach.

Inference of long-term preferences has been tested
in a second set of experiments. These experiments
are based on a simulated feedback. An automatic
procedure generates the feedback of some given
preferences by evaluating the assignments of solu-
tions. Long-term preferences are then extracted
and compared to the expressed preferences. Pre-
liminary results indicate that the inference method
can efficiently generalize the feedback. Conjunctive
rule sets that correspond to the exhibited prefer-
ences are obtained within few evaluations of inter-
mediate solutions.

Future work on this interactive approach for the
shift scheduling problem will focus on three aspects.
First, in its current form the proposed method is
not able to handle the “noise” in the feedback. If
random inadequate assignments are introduced in
the feedback (for simulating exceptional preferences
that should not be generalized), the resulting con-
junctive rule sets will contain additional rules or
tests for covering these exceptions. Different im-
provements of the inference method have already
been identified to deal with this issue. Second, we
plan to conduct an extensive experiment with real
users. The objective is to evaluate the potential
impact of the interactive approach on the decision-
making process, and determine if the system is ef-
ficient for real and long-term usages. Finally, we
intend to generalize this interactive optimization
approach to other optimization problems and also
investigate additional presentation and interaction
modes in the context of interactive optimization.
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